Расчет тепловой нагрузки
диаграмма тепловой нагрузки от общеобменной вентиляции
Расчет тепловой нагрузки на вентиляцию осуществляется по формуле:
Qв= Vн * k * p * Cр(tвн — tнро),
в формуле расчета тепловой нагрузки на вентиляцию Vн — внешний объем строения в кубометрах, k — кратность воздухообмена, tвн — температура в здании средняя, в градусах Цельсия, tнро — температура воздуха снаружи, используемая при расчетах отопления, в градусах Цельсия, р — плотность воздуха, в кг\кубометр, Ср — теплоемкость воздуха, в кДж\кубометр Цельсия.
Если температура воздуха ниже tнро снижается кратность обмена воздуха, а показатель расхода тепла считается равной Qв, постоянной величиной.
Расход тепла на вентиляцию
Удельный годовой расход тепла на вентиляцию рассчитывается так:
Q= * b * (1-E),
в формуле для расчета расхода тепла на вентиляцию Qo — общие теплопотери строения за сезон отопления, Qb — поступления тепла бытовые, Qs — поступления тепла снаружи (солнце), n — коэффициент тепловой инерции стен и перекрытий, E — понижающий коэффициент. Для индивидуальных отопительных систем 0,15, для центральных 0,1, b — коэффициент теплопотерь:
- 1,11 — для башенных строений;
- 1,13 — для строений многосекционных и многоподъездных;
- 1,07 — для строений с теплыми чердаками и подвалами.
Этап второй
Здесь рассчитываются аэродинамические показатели сопротивления. После выбора стандартных сечений воздуховодов уточняется величина скорости воздушного потока в системе.
Расчёт потерь давления на трение
Следующим шагом является определение удельных потерь давления на трение исходя из табличных данных или номограмм. В ряде случаев может пригодиться калькулятор для определения показателей на основе формулы, позволяющей произвести расчёт с погрешностью в 0,5 процента. Для вычисления общего значения показателя, характеризующего потери давления на всём участке, нужно его удельный показатель умножить на длину. На этом этапе также следует учитывать поправочный коэффициент на шероховатость. Он зависит от величины абсолютной шероховатости того или иного материала воздуховода, а также скорости.
Вычисление показателя динамического давления на отрезке
Здесь определяют показатель, характеризующий динамическое давление на каждом участке исходя из значений:
- скорости воздушного потока в системе;
- плотности воздушной массы в стандартных условиях, которая составляет 1,2 кг/м3.
Определение значений местных сопротивлений на участках
Их можно рассчитать исходя из коэффициентов местного сопротивления. Полученные значения сводят в табличной форме, в которую включаются данные всех участков, причём не только прямые отрезки, но и по несколько фасонных частей. Название каждого элемента заносится в таблицу, там же указываются соответствующие значения и характеристики, по которым определяется коэффициент местного сопротивления. Эти показатели можно найти в соответствующих справочных материалах по подбору оборудования для вентиляционных установок.
При наличии большого количества элементов в системе или при отсутствии определённых значений коэффициентов используется программа, которая позволяет быстро осуществить громоздкие операции и оптимизировать расчёт в целом. Общая величина сопротивления определяется как сумма коэффициентов всех элементов отрезка.
Вычисление потерь давления на местных сопротивлениях
Рассчитав итоговую суммарную величину показателя, переходят к вычислению потерь давления на анализируемых участках. После расчёта всех отрезков основной линии полученные числа суммируют и определяют общее значение сопротивления вентиляционной системы.
Расчет канального нагревателя
Расчет калорифера вентиляции электрического типа производится так:
P
=
v
* 0,36 * ∆
T
здесь v
— объем пропускаемого через калорифер воздуха в куб.м.\час, ∆T
— разница между температурой воздуха снаружи и внутри, которую необходимо обеспечить калориферу.
Этот показатель варьирует в пределах 10 — 20, точная цифра устанавливается клиентом.
Расчет нагревателя для вентиляции начинается с вычисления фронтальной площади сечения:
Аф=
R
*
p
\3600 *
Vp
,
здесь R
— объем расхода приточки, куб.м.\ч, p
— плотность атмосферного воздуха, кг\куб.м, Vp
— массовая скорость воздуха на участке.
Показатель массовой скорости определяется через фронтальную площадь теплообменников:
Vp
=
R
*
p
\3600 *
A
ф.факт
Для дальнейшего расчета калорифера вентиляции определяем нужное для согрева потока воздуха количества теплоты:
Q
=0,278 *
W
*
c
(T
п-
T
у),
здесь W
— расход теплого воздуха, кг\час, Тп
— температура приточного воздуха, градусы Цельсия, Ту
— температура уличного воздуха, градусы Цельсия, c
— удельная теплоемкость воздуха, постоянная величина 1,005.
Поддержание хорошего микроклимата в помещениях – очень важная проблема при эксплуатации любых зданий. Удаление загрязнённого, подача чистого и свежего воздуха становится наипервейшей задачей по поддержанию требуемых параметров микроклимата. Дополнительной функцией при этом становится сохранение тепла в помещениях.
Эта функция сейчас стала занимать особенно важное место в вопросах проектирования и эксплуатации зданий, так как множество уже построенных объектов не удовлетворяют по данному параметру современным нормативным документам и актам. Наиболее подходящим решением обеих задач является использование современных вентиляционных систем
Существует достаточно большое количество вариантов исполнения этих систем, каждая из которых имеет свои плюсы и минусы. Но всё же есть в них кое-что одно, что их объединяет. Именно этим “чем-то” являются трубы для вентиляции.
Расчет диффузоров и решеток
диффузор в промышленной вентиляции
Диффузоры используются для подачи или удаления воздуха из помещения. От правильности расчета количества и расположения диффузоров вентиляции зависит чистота и температура воздуха в каждом уголке помещения. Если установить диффузоров больше, увеличится давление в системе, а скорость падает.
Количество диффузоров вентиляции рассчитывается так:
N=R\(2820 * v * D * D),
здесь R — пропускная способность, в куб.м\час, v — скорость воздуха, м\с, D — диаметр одного диффузора в метрах.
Количество вентиляционных решеток можно рассчитать по формуле:
N=R\(3600 * v * S),
здесь R — расход воздуха в куб.м\час, v — скорость воздуха в системе, м\с, S — площадь сечения одной решетки, кв.м.
Расчет воздуховодов
Расчет воздуховодов вентиляции является одним из важнейших этапов проектирования системы подачи воздуха. Перед тем как приступить к непосредственному подбору площади сечения проводов, необходимо определить производительность вентиляции по воздуху.
Воздуховоды из пластика — это качественный и надёжный товар с длительным эксплуатационным сроком
Расчет производительности по воздуху системы вентиляции
Для начала необходим план объекта, на котором указаны площади и назначение всех комнат. Подача воздуха предусматривается только в те помещения, в которых люди находятся длительное время (гостиная, спальня, кабинет). Не подается воздух в коридоры, поскольку попадает туда из жилых комнат, а далее – в кухни и санузлы. Оттуда воздушный поток выводится через вытяжную вентиляцию. Такая схема предотвращает распространение неприятных запахов по дому или квартире.
Количество подаваемого воздуха для каждого типа жилого помещения рассчитывается с использованием МГСН 3.01.01. и СНиП 41-01-2003. Стандартным объемом на 1 человека в каждой комнате является 60 м?/ч. Для спальни эта цифра может быть уменьшена в 2 раза до 30 м?/ч
Также стоит отметить, что при расчете принимают во внимание только люди, длительно находящихся в помещении
Следующим этапом является расчет воздухообмена по кратности. Кратность показывает, сколько раз в час происходит полное обновление воздуха в помещении. Минимальным значением является единица. Это значение предотвращает застой атмосферы в комнатах.
Перед монтажом труб системы вентиляции производятся необходимые замеры и составляется технический проект
Исходя из вышесказанного, для определения расхода воздуха требуется вычислить два параметра воздухообмена: по кратности и по количеству людей, из которых выбирается большее значение.
Расчет по количеству людей:
L = N х Lnorm, где
L – мощность приточной вентиляции, м?/ч;
N – число людей;
Lnorm – нормированное значение расхода воздуха на человека (типовое – 60 м?/ч, в состоянии сна – 30 м?/ч).
Расчет по кратности воздухообмена:
L = b х S х H, где
L – мощность приточной вентиляции, м?/ч;
b – кратность воздуха (жилые помещения – от 1 до 2, офисы – от 2 до 3);
S – площадь помещения, м?;
H – вертикальные размеры помещения (высота), м?.
После расчета воздухообмена для каждого помещения полученные значения суммируются для каждого метода. Большее и будет требуемой производительностью вентиляции. Например, типичными значениями являются:
- комнаты и квартиры – 100-500 м?/ч;
- коттеджи – 500-2000 м?/ч;
- офисы – 1000-10000 м?/ч
Шланги для системы вентиляции имеют лёгкий вес и высокие параметры гибкости
Методика расчета сечения воздуховодов
Для расчета площади воздуховодов необходимо знать объем воздуха, который должен по ним протекать за промежуток времени (согласно предыдущему этапу расчета) и максимальную скорость потока. Расчетные значения сечения снижаются с увеличением скорости прохождения воздуха, однако при этом возрастает уровень шума. На практике, для коттеджей и квартир значение скорости выбирается в пределах 3-4 м/c.
Стоит отметить, что использовать низкоскоростные проводы с большими размерами не всегда представляется возможным ввиду сложности размещения в запотолочном пространстве. Уменьшить высоту конструкции можно используя прямоугольные воздуховоды, имеющие при аналогичной площади сечения меньшие габариты, по сравнению с круглой формой. Однако монтировать круглые гибкие каналы быстрее и легче.
Компьютерное моделирование внутренних инженерных сетей вентиляции
Расчет площади воздуховода производится по формуле:
Sc = L х 2,778 / V, где
Sc – расчетный размер сечения провода, см?;
L – расход воздуха, м?/ч;
V – скорость воздуха в проводе, м/с;
2,778 – константа для пересчета различных размерностей.
Расчет фактической поперечной площади воздуховода круглого сечения производится по формуле:
Расчет фактической площади пластиковых воздуховодов прямоугольного сечения производится по формуле:
S = A х B / 100, где
S – площадь воздуховода фактическая, см?;
A и B – поперечные размеры воздуховода прямоугольного сечения, мм.
От того, насколько верно будет рассчитана система вентиляции, зависит качество оттока загрязнённого воздуха
Расчеты начинают с магистрального канала и проводят для каждой ветки. Скорость воздуха в главном канале может быть увеличена до 6-8 м/c. Следует добавить, что в бытовых вентиляционных системах, как правило, применяют круглые каналы диаметром 100-250 мм или с аналогичной площадью сечения прямоугольные. Очень удобно использовать для выбора пластиковых воздуховодов для вентиляции каталоги Вентс.
Расчет воздуховодов или проектирование систем вентиляции
В создании оптимального микроклимата помещений наиболее важную роль играет вентиляция. Именно она в значительной степени обеспечивает уют и гарантирует здоровье находящихся в помещении людей. Созданная система вентиляции позволяет избавиться от множества проблем, возникающих в закрытом помещении: от загрязнения воздуха парами, вредными газами, пылью органического и неорганического происхождения, избыточным теплом. Однако предпосылки хорошей работы вентиляции и качественного воздухообмена закладываются задолго до сдачи объекта в эксплуатацию, а точнее, на стадии создания проекта вентиляции. Производительность систем вентиляции зависит от размеров воздуховодов, мощности вентиляторов, скорости движения воздуха и других параметров будущей магистрали. Для проектирования системы вентиляции необходимо осуществить большое количество инженерных расчетов, которые учтут не только площадь помещения, высоту его перекрытий, но и множество других нюансов.
Расчет площади сечения воздуховодов
После того, как вы определили производительность вентиляции, можно переходить к расчету размеров (площади сечения) воздуховодов.
Расчет площади воздуховодов определяется по данным о необходимом потоке, подаваемом в помещение и по максимально допустимой скорости потока воздуха в канале. Если допустимая скорость потока будет выше нормы, то это приведет к потере давления на местные сопротивления, а также по длине, что повлечет за собой увеличение затрат электроэнергии. Также правильный расчет площади сечения воздуховодов необходим для того, чтобы уровень аэродинамического шума и вибрация не превышали норму.
При расчете нужно учитывать, что если вы выберете большую площадь сечения воздуховода, то скорость воздушного потока снизится, что положительно повлияет и на снижение аэродинамического шума, а также на затраты по электроэнергии. Но нужно знать, что в этом случае стоимость самого воздуховода будет выше. Однако использовать «тихие» низкоскоростные воздуховоды большого сечения не всегда возможно, так как их сложно разместить в запотолочном пространстве. Уменьшить высоту запотолочного пространства позволяет применение прямоугольных воздуховодов, которые при одинаковой площади сечения имеют меньшую высоту, чем круглые (например, круглый воздуховод диаметром 160 мм имеет такую же площадь сечения, как и прямоугольный размером 200×100 мм). В то же время монтировать сеть из круглых гибких воздуховодов проще и быстрее.
Поэтому при выборе воздуховодов обычно подбирают вариант, наиболее подходящий и по удобству монтажа, и по экономической целесообразности.
Площадь сечения воздуховода определяется по формуле:
Sс = L * 2,778 / V, где
Sс — расчетная площадь сечения воздуховода, см²;
L — расход воздуха через воздуховод, м³/ч;
V — скорость воздуха в воздуховоде, м/с;
2,778 — коэффициент для согласования различных размерностей (часы и секунды, метры и сантиметры).
Итоговый результат мы получаем в квадратных сантиметрах, поскольку в таких единицах измерения он более удобен для восприятия.
Фактическая площадь сечения воздуховода определяется по формуле:
S = π * D² / 400 — для круглых воздуховодов,
S = A * B / 100 — для прямоугольных воздуховодов, где
S — фактическая площадь сечения воздуховода, см²;
D — диаметр круглого воздуховода, мм;
A и B — ширина и высота прямоугольного воздуховода, мм.
Расчет сопротивления сети воздуховодов
После того как вы рассчитали площадь сечения воздуховодов, необходимо определить потери давления в вентиляционной сети (сопротивление водоотводной сети). При проектировании сети необходимо учесть потери давления в вентиляционном оборудовании. Когда воздух движется по воздуховодной магистрали, он испытывает сопротивление. Для того чтобы преодолеть это сопротивление, вентилятор должен создавать определенное давление, которое измеряется в Паскалях (Па). Для выбора приточной установки нам необходимо рассчитать это сопротивление сети.
Для расчета сопротивления участка сети используется формула:
Где R – удельные потери давления на трение на участках сети
L – длина участка воздуховода (8 м)
Еi – сумма коэффициентов местных потерь на участке воздуховода
V – скорость воздуха на участке воздуховода, (2,8 м/с)
Y – плотность воздуха (принимаем 1,2 кг/м3).
Значения R определяются по справочнику (R – по значению диаметра воздуховода на участке d=560 мм и V=3 м/с). Еi – в зависимости от типа местного сопротивления.
В качестве примера, результаты расчета воздуховода и сопротивления сети приведены в таблице:
Как рассчитывается площадь воздуховода
Площадь воздуховода можно рассчитать с помощью нескольких способов:
- по размеру помещения;
- по числу проживающих в нем жильцов;
- с учетом требований санитарных норм и правил.
Рассчитать площадь поверхности воздуховодов можно как для конкретного помещения, так и для здания в общем. Посчитать требуемый параметр можно с помощью различного программного обеспечения или с применением формул.
Площадь вентиляционного отвода во время проектирования подбирается таким образом, чтобы воздушные массы по всей его длине перемещались приблизительно с равной скоростью. На разных участках объемы воздуха в системе могут отличаться. Поэтому размеры воздуховода обязаны увеличиваться, если возрастает количество проходящих через них воздушных масс.
Если увеличивается округлое сечение воздуховода, то в этом случае снижается скорость передвижения воздушных масс. Одновременно с этим уменьшается и аэродинамический шум. Недостатком этих воздуховодов является их высокая стоимость и большие размеры, поэтому установить такую конструкцию между черновым и подвесным потолком не получится.
Если эта возможность отсутствует, стоит присмотреться к прямоугольному сечению, так как в этом случае высота воздуховода будет намного меньше. Однако надо не забывать, что округлые конструкции гораздо проще монтировать.
Выбор определенного изделия будет зависеть от требований, которые предъявляются к вентиляционной системе. Если требуется низкий уровень шума, экономное потребление электричества и есть возможность установки габаритной системы, то в таком случае специалисты рекомендуют устанавливать округлые конструкции.
Выбор приточной установки
Для выбора приточной установки нам потребуются значения трех параметров: общей производительности, мощности калорифера и сопротивления воздухопроводной сети. Производительность и мощность калорифера мы уже рассчитали. Сопротивление сети можно найти с помощью Калькулятора или, при ручном расчете, принять равным типовому значению (см. раздел ).
Для выбора подходящей модели нам нужно отобрать вентустановки, максимальная производительность которых несколько больше расчетного значения. После этого по вентиляционной характеристике мы определяем производительность системы при заданном сопротивлении сети. Если полученное значение будет несколько выше требуемой производительности вентиляционной системы, то выбранная модель нам подходит.
Для примера проверим, подойдет ли вентустановка с приведенной на рисунке вентхарактеристикой для коттеджа площадью 200 м².
Расчетное значение производительности — 450 м³/ч. Сопротивление сети примем равным 120 Па. Для определения фактической производительности мы должны провести горизонтальную линию от значения 120 Па, после чего от точки ее пересечения с графиком провести вниз вертикальную линию. Точка пересечения этой линии с осью «Производительность» и даст нам искомое значение — около 480 м³/ч, что немного больше расчетного значения. Таким образом, эта модель нам подходит.
Заметим, что многие современные вентиляторы имеют пологие вентхарактеристики. Это означает, что возможные ошибки в определении сопротивления сети почти не влияют на фактическую производительность системы вентиляции. Если бы мы в нашем примере ошиблись при определении сопротивления воздухопроводной сети на 50 Па (то есть фактическое сопротивление сети было бы не 120, а 180 Па), производительность системы упала бы всего на 20 м³/ч до 460 м³/ч, что не повлияло бы на результат нашего выбора.
После выбора приточной установки (или вентилятора, если используется наборная система) может оказаться, что ее фактическая производительность заметно больше расчетной, а предыдущая модель приточной установки не подходит, поскольку ее производительности недостаточно. В этом случае у нас есть несколько вариантов:
- Оставить все как есть, при этом фактическая производительность вентиляции будет выше расчетной. Это приведет к повышенному расходу энергии, затрачиваемой на нагрев воздуха в холодное время года.
- «Задушить» вентустановку с помощью балансировочных дроссель-клапанов, закрывая их до тех пор, пока расход воздуха в каждом помещении не снизится до расчетного уровня. Это также приведет к перерасходу энергии (хотя и не такому большому, как в первом варианте), поскольку вентилятор будет работать с избыточной нагрузкой, преодолевая повышенное сопротивление сети.
- Не включать максимальную скорость. Это поможет в том случае, если вентустановка имеет 5–8 скоростей вентилятора (или плавную регулировку скорости). Однако большинство бюджетных вентустановок имеет только 3-х ступенчатую регулировку скорости, что, скорее всего, не позволит точно подобрать нужную производительность.
- Снизить максимальную производительность приточной установки точно до заданного уровня. Это возможно в том случае, если автоматика вентустановки позволяет настраивать максимальную скорость вращения вентилятора.
Пример расчета и обустройства вентиляции
За основу возьмем планировку частного дома внутренней площадью 91.5 м² и перекрытиями высотой 3 м, представленного выше на чертеже. Как рассчитать количество вытяжки / притока на здание целиком согласно методике СНиП:
- Объем удаленного воздуха из гостиной и спальни, имеющей равную квадратуру, составит 15.75 х 3 х 1 = 47.25 м³/ч.
- В детской комнате: 21 х 3 х 1 = 63 м³/ч.
- Кухня: 21 х 3 х 1 + 100 = 163 м³/ч.
- Санузел – 25 м³/ч.
- Итого 47.25 + 47.25 + 63 + 163 + 25 = 345.5 м³/ч.
Наружная схема подачи воздуха и выброса вредных газов из комнат загородного дома Теперь проверим результаты на соответствие второму нормативному документу. Поскольку в доме проживает семья из 4 человек (2 взрослых + 2 детей), в гостиной, спальне и детской долго находятся по 2 чел. Пересчитаем воздухообмен в указанных комнатах по количеству людей: 2 х 30 = 60 м³/ч (в каждом помещении).
Объем вытяжки из детской удовлетворяет требованиям (63 куба в час), а вот значения для спальни и гостиной придется откорректировать. Двум человекам недостаточно 47.25 м³/ч, берем 60 кубов и снова пересчитываем общую величину воздухообмена: 60 + 60 + 63 + 163 + 25 = 371 м³/ч.
Не менее важно правильно распределить воздушные потоки в здании. В частных коттеджах принято устраивать системы естественной вентиляции – это значительно дешевле и проще монтажа электрических нагнетателей с воздуховодами. Добавим лишь один элемент принудительного удаления вредных газов – кухонную вытяжку
Добавим лишь один элемент принудительного удаления вредных газов – кухонную вытяжку.
Пример организация воздухообмена в одноэтажном дачном доме
Как правильно организовать естественное движение потоков:
- Приток во все жилые помещения обеспечим через автоматические клапаны, встроенные в оконный профиль либо прямо в наружную стену. Ведь стандартные металлопластиковые окна герметичны.
- В перегородке между кухней и санузлом устроим блок из трех вертикальных шахт, выходящих на кровлю.
- Под межкомнатными дверьми предусмотрим зазоры шириной до 1 см для прохода воздуха.
- Установим кухонную вытяжку и подключим к отдельному вертикальному каналу. Она возьмет на себя часть нагрузки – удалит 100 кубов отработанных газов за 1 час в процессе готовки пищи. Останется 371 — 100 = 271 м³/ч.
- Две шахты выведем решетками в санузел и кухню. Размеры труб и высоту рассчитаем в последнем разделе данного руководства.
- За счет естественной тяги, возникающей в двух каналах, воздух устремится из детской, спальни и зала в коридор, а дальше — к вытяжным решеткам.
В заключение
Процесс проектирования и расчета вентиляционной системы достаточно сложный и занимает немало времени.
Необходимо пройти все этапы:
- ознакомиться с нормативными требованиями;
- выбрать типа воздуховода;
- определить нужный диаметр вытяжной трубы или размеры сечения;
- рассчитать длину;
- спланировать монтаж.
Соблюдение всех этих пунктов позволит избежать проблем с циркуляцией воздуха в будущем и сэкономить на обслуживании.
Организация системы вентиляции является одним из самых важных элементов строительства, так как микроклимат в помещении напрямую влияет на работоспособность и здоровье человека.