Подбор диаметра труб отопления — Teplopraktik
Диаметр труб отопления зависит от того какой объем теплоносителя будет проходить через них. Очевидно, что на главном подающем трубопроводе, идущем от отопительного котла, диаметр будет больше, на ветке с тремя радиаторами он будет еще меньше, а на конечном радиаторе он будет самым маленьким. Соответственно диаметр трубы будет зависеть от общей тепловой мощности радиаторов, который питает данный трубопровод.
Кроме того диаметр трубопровода зависит от скорости движения теплоносителя в системе и от перепада температур подача/обратка. Чем выше этот перепад, тем меньше требуется диаметр трубопровода. Стандартный перепад температур – 20°С. В более комфортных системах этот перепад меньше – 10°С.
Отопительная система с циркуляционным насосом характеризуется высокой скоростью теплоносителя, система же с естественной циркуляцией обладает низкой скоростью, поэтому это обязательно надо учитывать при подборе труб отопления. Не стоит закладывать в расчет трубопроводов слишком большую скорость движения воды в трубах, т.к. это создаст различные неприятные шумы и журчание в трубах. При слишком низкой скорости же возникает риск образования воздушных пробок в системе. Скорость движения в трубах должна быть в пределах 0,4 – 0,6 м/с. Самотечная система характеризуется значительно более низкой скоростью теплоносителя, поэтому диаметр труб нужно выбирать больше.
Поэтому ниже мы укажем таблицы подбора диаметра труб для различных систем с указанными параметрами. В таблице используется подбор диаметра труб из различных материалов. Стальные трубы ВГП имеют обозначение по внутреннему диаметру, тогда как полипропиленовые, металлопластиковые и трубы из сшитого полиэтилена имеют обозначение по наружному диаметру. Это учтено в таблице подбора диаметров трубопроводов.
Тепловая нагрузка, кВт | Необходимый внутренний диаметр трубы, мм | Подбор трубы для необходимого внутреннего диаметра: | ||
ВГП стальные | Полипропилен | Сшитый полиэтилен | ||
50 | 39 | 1,5 дюйма (40мм) | 50 | 50 |
40 | 35 | 1,5 дюйма (40мм) | 50 | 50 |
30 | 30 | 1,25 дюйма (32мм), дюйм с четвертью) | 40 | 40 |
20 | 25 | 1 дюйм (25мм) | 32 | 32 |
15 | 21 | 1 дюйм (25мм) | 32 | 32 |
12 | 19 | 3/4 дюйма (20мм) | 25 | 25 |
10 | 17 | 3/4 дюйма (20мм) | 25 | 25 |
8 | 16 | 3/4 дюйма (20мм) | 25 | 25 |
6 | 14 | 1/2 дюйма (15мм) | 20 | 20 |
5 | 12 | 1/2 дюйма (15мм) | 20 | 20 |
4 | 11 | 1/2 дюйма (15мм) | 20 | 20 |
3 | 10 | 3/8 дюйма (10мм) | 16 | 16 |
2 | 8 | 3/8 дюйма (10мм) | 16 | 16 |
1 | 6 | 3/8 дюйма (10мм) | 16 | 16 |
Тепловая нагрузка, кВт | Необходимый внутренний диаметр трубы, мм | Подбор трубы для необходимого внутреннего диаметра: | ||
ВГП стальные | Полипропилен | Сшитый полиэтилен | ||
50 | 55 | 2 дюйма (50мм) | 63 | 63 |
40 | 48 | 2 дюйма (50мм) | 63 | 63 |
30 | 43 | 2 дюйма (50мм), либо 1,5 дюйма (40мм) | 63 | 63 |
20 | 35 | 1,5 дюйма (40мм) | 50 | 50 |
15 | 30 | 1,25 дюйма (32мм) | 40 | 40 |
12 | 27 | 1,25 дюйма (32мм) | 40 | 40 |
10 | 25 | 1 дюйм (25мм) | 32 | 32 |
8 | 22 | 1 дюйм (25мм) | 32 | 32 |
6 | 19 | 3/4 дюйма (20мм) | 25 | 25 |
5 | 17 | 3/4 дюйма (20мм) | 25 | 25 |
4 | 16 | 1/2 дюйма (15мм) | 20 | 20 |
3 | 13 | 1/2 дюйма (15мм) | 20 | 20 |
2 | 11 | 1/2 дюйма (15мм) | 16 | 16 |
1 | 8 | 1/2 дюйма (15мм) | 16 | 16 |
Тепловая нагрузка, кВт | Необходимый внутренний диаметр трубы, мм | Подбор трубы для необходимого внутреннего диаметра: | ||
ВГП стальные | Полипропилен | Сшитый полиэтилен | ||
30 | 48 | 2 дюйма (50мм) | 63 | 63 |
20 | 39 | 1,5 дюйма (40мм) | 50 | 50 |
15 | 34 | 1,5 дюйма (40мм) | 50 | 50 |
12 | 30 | 1,25 дюйма (32мм), (дюйм с четвертью) | 40 | 40 |
10 | 28 | 1,25 дюйма (32мм), (дюйм с четвертью) | 40 | 40 |
8 | 25 | 1 дюйм (25мм) | 32 | 32 |
6 | 21 | 3/4 дюйма (20мм) | 25 | 25 |
5 | 19 | 3/4 дюйма (20мм) | 25 | 25 |
4 | 17 | 3/4 дюйма (20мм) | 25 | 25 |
3 | 15 | 3/4 дюйма (20мм)) | 25 | 25 |
2 | 12 | 1/2 дюйма (15мм) | 20 | 20 |
1 | 10 | 1/2 дюйма (15мм) | 20 | 20 |
Пример использования: двухтрубная система с циркуляционным насосом, общая мощность 18 кВт.
Разводка выполнена полипропиленовой трубой, условное обозначение — ПП.
Как видим из схемы — вначале из котла выходит полипропиленовая труба, диаметром 40мм, внутренний просвет у нее 25мм, что соответствует металлической ВГП трубе в 1 дюйм (25мм). Далее идет отвод на бойлер (4 кВт) и теплые полы (2 кВт) двух ПП труб, диаметром 16мм. После этого часть теплоносителя отделилась, поэтому нет необходимости в такой толстой трубе. На отопление 1-ого и 2-ого этажей уже пойдет более тонкая труба — 32мм, она пойдет до первого тройника. На тройнике отделяется ветка на 1-ый этаж, диаметром 25мм, и на 2-ой этаж, также диаметром 25мм. К конечным радиаторам уже подходит полипропиленовая труба диаметром 16мм. И на 3-х последних радиаторах также идет заужение подающей трубы до 16мм.
В однотрубной системе, в отличие от двухтрубной по одному трубопроводу подается весь теплоноситель системы. Поэтому в такой системе весь трубопровод (после ответвления трубы на бойлер и теплый пол) будет диаметром 32мм, а к отдельным радиаторам от основного трубопровода будут подходить трубы 16мм.
teplopraktik.ru
Расчет для нестандартных комнат
Этот вариант расчета подходит для нестандартных комнат со слишком низкими либо же чересчур высокими потолками. В основу расчета положено утверждение, в соответствии с которым для прогрева 1 м3 жилого пространства нужно порядка 41 Вт мощности батареи. То есть вычисления выполняются по единственной формуле, имеющей такой вид:
A=Bx41,
где:
- А – нужное число секций отопительной батареи;
- B – объем комнаты. Рассчитывается как произведение длины помещения на его ширину и на высоту.
Для примера рассмотрим комнату длиной 4 м, шириной 3,5 м и высотой 3 м. Ее объем составит 42 м3.
Общую потребность этого помещения в тепловой энергии рассчитаем, умножив его объем на упоминавшиеся ранее 41 Вт. Результат – 1722 Вт. Для примера возьмем батарею, каждая секция которой выдает 160 Вт тепловой мощности. Нужное количество секций рассчитаем, разделив суммарную потребность в тепловой мощности на значение мощности каждой секции. Получится 10,8. Как обычно, округляем до ближайшего большего целого числа, т.е. до 11.
Расчетные данные рекомендуется округлять в сторону увеличения по той причине, что компании-производители нередко указывают в технической документации мощность, несколько превышающую реальное значение.
Расчет необходимого количества радиаторов для отопления
Расчет батарей отопления на площадь
Расчет радиаторов отопления по площади помещения — это не самый точный вариант, но подходит, если квартира с высотой потолков 2,6 – 2,7 м.
Порядок действий:
- Узнаём общую площадь отапливаемого пространства (данные берутся в документации). Например, это 50 м2.
- Умножаем это число на 100 (Вт). Пример: 50 х 100 = 5000 Вт. (Или 5 кВт) – это общее количество тепла необходимое для данной квартиры.
- Смотрим в документах к радиатору, сколько тепла может выделить одна секция (см. ниже Таблицу 1). Например, биметаллический L 500 = 180 Вт.
- Теперь общее тепло делим на тепло из одной секции. 5000 Вт : 180 Вт = 27,77. Округляем до 28. Результат: для обогрева квартиры 50 м2 нужно 28 секции радиаторов.
Секции радиаторов отопления
Нужно будет произвести такие же расчёты батареи отопления для каждой комнаты отдельно.
Если батареи планируется монтировать в нише или скрыть за экраном, то нужно добавить 15%. Например, мы получили для спальни в 14 м2, радиатор в 8 секций. Но т.к. батареи будут «прятаться», поэтому 8 + 1,2 (15% от 8) = 9,2 т.е. 9 секций.
Для кухни округлять число радиаторов можно в меньшую сторону. А для угловой комнаты и комнаты с балконной дверью – в большую.
Стандартный расчет радиаторов отопления
Расчет радиаторов отопления
Начнем обучение с рассмотрения наиболее часто использующегося метода расчета. Его вряд ли можно считать самым точным, зато по простоте выполнения он определенно вырывается вперед.
Стандартный расчет радиаторов отопления
В соответствии с этим «универсальным» методом для обогрева 1 м2 площади помещения нужно 100 Вт мощности батареи. В данном случае вычисления ограничиваются одной простой формулой:
K=S/U*100
В этой формуле:
- K – необходимое количество секций батареи для обогрева рассматриваемого помещения;
- S – площадь этого помещения;
U – мощность одной секции радиатора.
Для примера рассмотрим порядок расчета необходимого числа секций батареи для комнаты габаритами 4х3,5 м. Площадь такого помещения составляет 14 м2. Производитель заявляет, что каждая секция выпущенной им батареи выдает 160 Вт мощности.
Подставляем значения в приведенную выше формулу и получаем, что для обогрева нашей комнаты нужно 8,75 секций радиатора. Округляем, конечно же, в большую сторону, т.е. к 9. Если комната угловая, добавляем 20%-й запас, снова округляем, и получаем 11 секций. Если в работе отопительной системы наблюдаются проблемы, добавляем еще 20% к первоначально рассчитанному значению. Получится около 2. То есть в сумме для обогрева 14-метровой угловой комнаты в условиях нестабильной работы отопительной системы понадобится 13 секций батареи.
Расчет алюминиевых радиаторов отопления
Приблизительный расчет для стандартных помещений
Очень простой вариант расчета. Основывается он на том, что размер отопительных батарей серийного производства практически не отличается. Если высота комнаты составляет 250 см (стандартное значение для большинства жилых помещений), то одна секция радиатора сможет обогреть 1,8 м2 пространства.
Площадь комнаты составляет 14 м2. Для расчета достаточно разделить значение площади на упоминавшиеся ранее 1,8 м2. В результате получается 7,8. Округляем до 8.
Таким образом, чтобы прогреть 14-метровую комнату с 2,5-метровым потолком нужно купить батарею на 8 секций.
Подбор радиаторов отопления по тепловой мощности
Особенности стен и потолков
Теперь рассмотрим три коэффициента, которые связаны с особенностями стен и потолков отапливаемого помещения: D – число внешних стен, E – уровень теплоизоляции стен, F – высота потолков.
Важно учесть площадь окон и качество их остекления
Чем активнее комната контактирует с внешней средой, тем выше ее теплопотери:
- если одна внешняя стена, D = 1;
- две – 1,2;
- три – 1,3;
- четыре внешних стены – 1,4.
Чем качественнее утеплены стены, тем ниже теплопотери помещения:
- если теплоизоляция профессиональная, E = 0,85;
- поверхностная теплоизоляция – 1;
- отсутствие теплоизоляции – 1,27.
Чем выше потолки в комнате, тем большая мощность батарей потребуется для ее комфортного обогрева, поэтому, чтобы получить правильный показатель теплоотдачи приборов, учитывается корректирующий коэффициент F:
- высота 2,7 м и меньше – 1;
- 2,8-3 м – 1,05;
- 3-3,5 м – 1,1;
- 3,6-4 м – 1,15;
- 4 и выше – 1,2.
Подсчет по площади
Приблизительно вычислить количество секций можно при знании площади помещения, в котором будут устанавливаться батареи. Это самый примитивный метод вычисления, он неплохо работает для домов, где высота потолков небольшая (2,4-2,6 м).
Правильная производительность радиаторов рассчитывается в «тепловой мощности». По нормативам для обогрева одного «квадрата» площади квартиры нужно 100 ватт — на этот показатель и умножается полная площадь. Например, на помещение в 25 кв.м потребуется 2500 ватт.
Виды секций
Вычисленное таким образом количество тепла делят на теплоотдачу от секции батареи (указывается производителем). Дробное число при расчетах округляют в большую сторону (чтобы радиатор гарантированно справился с прогревом). Если батареи выбирают для помещений с низкой потерей тепла или дополнительными отопительными приборами (например, для кухни), можно округлить результат в меньшую сторону — нехватка мощности не будет заметна.
Разберем на примере:
Если в комнату площадью 25 кв.м планируется установка радиаторов отопления с теплоотдачей 204 Вт, формула будет выглядеть так: 100 Вт (мощность для обогрева 1 кв.м) * 25 кв.м (общая площадь) / 204 Вт (теплоотдача одной секции радиатора) = 12,25. Округлив число в большую сторону, получим 13 — количество секций батареи, которое потребуется для отопления комнаты.
Остекление, площадь и ориентация окон
На окна может приходиться от 10% до 35% теплопотерь. Конкретный показатель зависит от трех факторов: характера остекления (коэффициент А), площади окон (В) и их ориентации (С).
Зависимость коэффициента от вида остекления:
- тройное стекло или аргон в двойном пакете – 0,85;
- двойное стекло – 1;
- одинарное стекло – 1,27.
Объем тепловых потерь напрямую зависит и от площади оконных конструкций. Коэффициент В рассчитывается на базе соотношения общей площади оконных конструкций к площади отапливаемой комнаты:
- если окна составляют 10% и меньше общей площади комнаты, В = 0,8;
- 10-20% – 0,9;
- 20-30% – 1;
- 30-40% – 1,1;
- 40-50% – 1,2.
И третий фактор – ориентация окон: тепловые потери в комнате, выходящей на юг, всегда ниже, чем в помещении, которое выходит на север. Исходя из этого имеем два коэффициента С:
- окна на севере или на западе – 1,1;
- окна на южной или восточной стороне – 1.
Причины возможных ошибок
Производители стараются указывать в документах к батареям максимальные показатели теплоотдачи. Они возможны только если температура воды в отоплении будет на уровне 90 С (в паспорте тепловой напор указан 60 С).
В реальности такие значения достигаются теплосетями далеко не всегда. Это значит, что мощность секции будет ниже, а секций нужно больше. Теплоотдача одной секции может быть 50-60 против заявленных 180 Вт!
Боковое подключение радиаторов отопления
Если в сопроводительном документе к радиатору указано минимальное значение теплоотдачи, опираться в расчётах теплоотдачи радиатора батарей отопления лучше на этот показатель.
Ещё одно обстоятельство, которое влияет на мощность радиатора – схема его подключения. Если, например, длинный радиатор из 12 секций подключить боковым методом, дальние секции всегда будут намного холоднее, чем первые. А значит, и расчёты мощности были напрасными!
Длинные радиаторы нужно подключать по диагональной схеме, коротким батареям подойдёт любой вариант.
Способы расчета
- один предусматривает использование площади комнаты;
- второй заключается в применении объема помещения, в котором будет происходить установка батареи.
Первый целесообразно применять только тогда, когда высота потолка не является большей 3 м
. Если же стены имеют большую высоту, то более надежным становится второй способ. Оба метода заключаютсяв расчете количества тепла, необходимого для создания оптимальной температуры в комнате . Расчет проводят по-разному:
- первый способ предполагает умножение площади на цифру 100 Вт (является нормативной тепловой мощностью на 1 м2);
- второй является несколько похожим. Он заключается в умножении объема комнаты на 41 Вт.
При этом оба метода имеют одну общую особенность: в обеих полученную цифру корректируют с помощью поправочных коэффициентов, которые показывают влияние особенностей помещения на потери тепла или его экономию.
Максимально точный вариант расчета
Из приведенных выше расчетов мы увидели, что ни один из них не является идеально точным, т.к. даже для одинаковых помещений результаты пусть и немного, но все равно отличаются.
Если вам нужна максимальная точность вычислений, используйте следующий метод. Он учитывает множество коэффициентов, способных повлиять на эффективность обогрева и прочие значимые показатели.
В целом расчетная формула имеет следующий вид:
T =100 Вт/м 2 * A *B * C * D * E * F * G * S ,
- где Т – суммарное количество тепла, необходимое для обогрева рассматриваемой комнаты;
- S – площадь обогреваемой комнаты.
Остальные коэффициенты нуждаются в большее подробном изучении. Так, коэффициент А учитывает особенности остекления помещения.
Значения следующие:
- 1,27 для комнат, окна которых остеклены просто двумя стеклами;
- 1,0 – для помещений с окнами, оснащенными двойными стеклопакетами;
- 0,85 – если окна имеют тройной стеклопакет.
Коэффициент В учитывает особенности утепления стен помещения .
Зависимость следующая:
- если утепление низкоэффективное, коэффициент принимается равным 1,27;
- при хорошем утеплении (к примеру, если стены выложены в 2 кирпича либо же целенаправленно утеплены качественным теплоизолятором) , используется коэффициент равный 1,0;
- при высоком уровне утепления – 0,85.
Коэффициент C указывает на соотношение суммарной площади оконных проемов и поверхности пола в комнате.
Зависимость выглядит так:
- при соотношении равном 50% коэффициент С принимается как 1,2;
- если соотношение составляет 40%, используют коэффициент равный 1,1;
- при соотношении равном 30% значение коэффициента уменьшают до 1,0;
- в случае с еще меньшим процентным соотношением используют коэффициенты равные 0,9 (для 20%) и 0,8 (для 10%).
Коэффициент D указывает на среднюю температуру в наиболее холодный период года .
Зависимость выглядит так:
- если температура составляет -35 и ниже, коэффициент принимается равным 1,5;
- при температуре до -25 градусов используется значение 1,3;
- если температура не опускается ниже -20 градусов, расчет ведется с коэффициентом равным 1,1;
- жителям регионов, в которых температура не опускается ниже -15, следует использовать коэффициент 0,9;
- если температура зимой не падает ниже -10, считайте с коэффициентом 0,7.
Коэффициент E указывает на количество внешних стен.
Если внешняя стена одна, используйте коэффициент 1,1. При двух стенах увеличьте его до 1,2; при трех – до 1,3; если же внешних стен 4, используйте коэффициент равный 1,4.
Коэффициент F учитывает особенности вышерасположенно й комнаты . Зависимость такова:
- если выше находится не обогреваемое чердачное помещение, коэффициент принимается равным 1,0;
- если чердак отапливаемый – 0,9;
- если соседом сверху является отапливаемая жилая комната, коэффициент можно уменьшить до 0,8.
И последний коэффициент формулы – G – учитывает высоту помещения.
Порядок следующий:
- в комнатах с потолками высотой 2,5 м расчет ведется с использованием коэффициента равного 1,0;
- если помещение имеет 3-метровый потолок, коэффициент увеличивают до 1,05;
- при высоте потолка в 3,5 м считайте с коэффициентом 1,1;
- комнаты с 4-метровым потолком рассчитываются с коэффициентом 1,15;
- при расчете количества секций батареи для обогрева помещения высотой 4,5 м увеличьте коэффициент до 1,2.
Этот расчет учитывает почти все существующие нюансы и позволяет определить необходимое число секций отопительного агрегата с наименьшей погрешностью. В завершение вам останется лишь разделить расчетный показатель на теплоотдачу одной секции батареи (уточните в прилагающемся паспорте) и, конечно же, округлить найденное число до ближайшего целого значения в сторону увеличения.
Как посчитать количество секций радиатора отопления на помещение? Вы решили в новом доме, или заменить старые на новые, или ставите для дизайна приборы другой модификации, и Вам надо подсчитать число его сегментов для комнаты. Исходя из этих расчетов можно подсчитать, сколько устройств Вам потребуется на все помещение.
Теперь о некоторых нюансах. Если Вы давно проживаете в квартире и знаете как у Вас топят:
- если трубы горячие и температура батарей нормальная, просто они малые по мощности или дизайн не устраивает, можете считать точное количество секций по площади;
- если же у Вас прохладно, то посчитайте точно и добавьте на пару больше.
Для начала почитайте, а я буду описывать его биметаллическую разновидность.
Расчет затрат на отопление
Хорошая отопительная система требует достаточно больших финансовых вложений. Основные расходы связаны с:
- Оборудование отопительной системы. В него входят котел, насос, радиаторы и материал для разводки.
- Установка обогревательной системы.
- Затраты на топливо. Количество потраченных денег зависит от выбранного вами топлива.
- Поддержка оборудования в рабочем состояние.
При расчете затрат нужно учитывать удельную теплоту сгорания. Рассчитайте путем деления теплопотери за сезон на теплотворность сырьевого продукта и получите количество использованного топлива. Умножьте на стоимость за единицу измерения.
Еще один метод подсчета — это расход кВт в час. На дом, площадью 120 м2 потребляется 12 кВт теплоэнергии. В месяц выходит 8640 кВт. Способ подходит для пользователей газа и электричества
Расчет по площади
Простая таблица для расчета мощности радиатора для отопления помещения определенной площади.
Как осуществляется расчет батареи отопления на квадратный метр обогреваемой площади? Для начала нужно ознакомиться с базовыми параметрами, учитываемыми в вычислениях, которые включают в себя:
- тепловую мощность для обогрева 1 кв. м – 100 Вт;
- стандартную высоту потолков – 2,7 м;
- одну внешнюю стену.
Исходя из таких данных, тепловая мощность, необходимая для обогрева помещения площадью 10 кв. м, составляет 1000 Вт. Полученная мощность делится на теплоотдачу одной секции – в результате получаем необходимое количество секций (или подбираем подходящий стальной панельный или трубчатый радиатор).
Для самых южных и холодных северных регионов применяются дополнительные коэффициенты, как повышающие, так и понижающие, – речь о них пойдет дальше.
Методология расчёта
Её применяют при определении реального температурного напора Δt (разница между средними температурами теплоносителя в радиаторе и воздуха в комнате). Расчёт производят по формуле:
Δt = (tподачи + tобратки)/2 – t воздуха
Учитывая нормативную Δt = 70С и среднюю температуру воздуха в комнате – 22 С, получают:
(tподачи + tобратки) = 2(70 + 22) = 184С
Принимая во внимание, что базовый норматив разницы температур между подачей и обраткой составляет 20 С, определяют их значение:
tподачи = (184 + 20)/2 = 102С
tобратки = (184 — 20)/2= 82С
В действительности такое просто невозможно. Дело в том, что максимальный нагрев воды котёл может выдать не больше 80 С, притом дойдёт до батареи отопления максимум 77 С. Δt примерно составит 40 С. Следовательно, реальная теплоотдача 1-й секции будет не 180 Вт, а 100 Вт. Для упрощения расчёта теплоотдачи применяют таблицу понижающих коэффициентов.
Δt | К |
40 | 0,48 |
45 | 0,56 |
50 | 0,65 |
55 | 0,73 |
60 | 0,82 |
65 | 0,91 |
70 | 1 |
Паспортную величину мощности умножают на соответствующий коэффициент. То есть, на обогрев одного квадратного метра площади помещения потребуется теплоотдача 180 х 0,48 = 86,4 Вт. С округлением в большую сторону получают, что для обогрева 10 м2 потребуется приблизительно 1 кВт теплоотдачи. То есть разделив 1 кВт на 86,4 Вт, получат 1000/86,4 = 9 секций.
Тип подключения батарей
Важнейший фактор, определяющий уровень теплоотдачи отопительных радиаторов, – схема их подключения. В нашей формуле она выражена коэффициентом G – его параметр зависит от характера подключения и расположения приборов:
Типы подключения
- при диагональном подключении с верхней подачей и нижней обраткой – 1;
- при одностороннем подключении с верхней подачей и нижней обраткой – 1,03;
- при двустороннем подключении с нижней подачей и нижней обраткой – 1,13;
- при диагональном подключении с нижней подачей и верхней обраткой – 1,25;
- при одностороннем подключении с нижней подачей и верхней обраткой – 1,28;
- при одностороннем подключении с нижней подачей и нижней обраткой – 1,28.
Информация
При строительстве или ремонте жилого помещения важнейшим вопросом является его обогрев. Расчет эффективной системы отопления – ответственная задача для строителя-теплотехника. Однако, можно самостоятельно сделать расчет радиаторов отопления по площади помещения с помощью онлайн калькулятора. Необходимо только ввести известные данные в программу.
Функции калькулятора
Калькулятор для расчета радиаторов отопления на квадратный метр или по мощности секций является онлайн программой и состоит из:
- блока окон «Вид радиатора»;
- десяти строк ввода данных;
- блока окон «Тип подключения»;
- четырех строк с выводом готовых расчетов.
Программа произведет расчет количества секций радиаторов отопления; тепловых потерь помещения; удельных теплопотерь помещения; количества тепла, выделяемого одной секцией. Всю полученную информацию можно сохранить в файле PDF или вывести на печать.
Принцип работы на калькуляторе
Для получения готовых расчетов следуйте нижеуказанному алгоритму:
Выберете необходимый вид радиатора. В строке ниже автоматически появится мощность одной секции выбранного вида радиатора, в ваттах.
В строках 2-4 укажите размеры комнаты: длину, ширину, высоту в метрах.
Выберете качество остекления.
Выберете площадь остекления (равна отношению площади окна к площади помещения), в %.
Укажите степень утепления.
Выберете климатическую зону – регион проживания.
Укажите количество внешних углов и стен комнаты.
Выберете вариант помещения, которое находится над комнатой.
Укажите температуру теплоносителя, в ℃
Это очень важно, например центральное отопление дает 70-80 градусов, а котел на твердом топливе если есть дома тёплый пол настраивают на 50-60
Выберете планируемый тип подключения.
После этого появится следующая информация:
- Количество секций, в штуках.
- Тепловые потери помещения, в ваттах.
- Удельные теплопотери помещения, в Вт/м2.
- Количество тепла, выделяемого 1 секцией, в ваттах.
Полезная информация
Важнейшими техническими характеристиками различных моделей радиаторов отопления являются:
- Мощность секций радиатора. Чем больше мощность радиатора, тем выше теплоотдача и эффективность отопительного прибора.
- Рабочее давление радиатора. Высокий порог данного параметра позволяет выдерживать гидравлические удары и перепады давления в системе, увеличивает срок службы изделия.
- Материал и вес радиатора. Вид материала (металла, сплава) напрямую влияет на прочность и долговечность отопительного прибора, его коррозионную стойкость. Вес изделия важен при монтаже, особенно, если устанавливать радиаторы будет один человек.
На рынке радиаторов отопления присутствуют четыре основных вида: стальные, чугунные, алюминиевые и биметаллические радиаторы.
Стальные радиаторы – имеют хорошую теплоотдачу и относительно невысокую стоимость. Однако, они не достаточно устойчивы к гидроударам и высокому давлению, подвержены коррозии. Различают панельные и трубчатые радиаторы из стали.
Чугунные радиаторы – самый популярный и долговечный вид радиаторов в России для централизованного отопления. Обладают отличной теплоотдачей, стойкостью к коррозии и гидроударам. В то же время, радиаторы из чугуна долго нагреваются и долго остывают; имеют большой вес, что является недостатком при монтаже одним специалистом.
Алюминиевые радиаторы – одни из самых популярных современных видов радиаторов. Изготавливают литые и экструзионные радиаторы из алюминия
Отличаются высокой теплоотдачей и небольшим весом, что важно при установке приборов. При этом, они чувствительны к гидроударам и перепадам давления в системе отопления, быстро нагреваются и быстро остывают
Биметаллические радиаторы – обладают относительно лучшими характеристиками среди всех видов радиаторов. Изготавливаются из двух материалов: внешней алюминиевой оболочки и внутренних стальных или медных труб. Обладают высокой теплоотдачей и прочностью, хорошей стойкостью к коррозии и гидроударам, имеют сравнительно небольшой вес.
Справка
Радиатор отопления – отопительный прибор, конструктивно состоящий из отдельных элементов трубчатого или вытянутого вида – секций, с внутренними каналами, по которым циркулирует теплоноситель, как правило, вода. Тепло от радиатора отопления отводится конвекцией, излучением и теплопроводностью.
Что делать если нужен очень точный расчет?
К сожалению, далеко не каждая квартира может считаться стандартной. Еще в большей степени это относится к частным жилым домам. Возникает вопрос: как рассчитать количество радиаторов отопления с учетом индивидуальных условий их эксплуатации? Для это понадобится учесть множество различных факторов.
При расчете количества секций отопления нужно учесть высоту потолка, количество и размеры окон, наличие утепления стен и т.п.
Особенность этого метода состоит в том, что при вычислении необходимого количества тепла используется ряд коэффициентов, учитывающих особенности конкретного помещения, способные повлиять на его способность сохранять или отдавать тепловую энергию. Формула для расчетов выглядит так:
КТ = 100Вт/кв.м. * П * К1 * К2 * К3 * К4 * К5 * К6 * К7. где
КТ — количество тепла, необходимого для конкретного помещения; П — площадь комнаты, кв.м.; К1 — коэффициент, учитывающий остекление оконных проемов:
- для окон с обычным двойным остеклением — 1,27;
- для окон с двойным стеклопакетом — 1,0;
- для окон с тройным стеклопакетом — 0,85.
К2 — коэффициент теплоизоляции стен:
- низкая степень теплоизоляции — 1,27;
- хорошая теплоизоляция (кладка в два кирпича или слой утеплителя) — 1,0;
- высокая степень теплоизоляции — 0,85.
К3 — соотношение площади окон и пола в помещении:
К4 — коэффициент, позволяющий учесть среднюю температуру воздуха в самую холодную неделю года:
- для -35 градусов — 1,5;
- для -25 градусов — 1,3;
- для -20 градусов — 1,1;
- для -15 градусов — 0,9;
- для -10 градусов — 0,7.
К5 — корректирует потребность в тепле с учетом количества наружных стен:
К6 — учет типа помещения, которое расположено выше:
- холодный чердак — 1,0;
- отапливаемый чердак — 0,9;
- отапливаемое жилое помещение — 0,8
К7 — коэффициент, учитывающий высоту потолков:
Такой расчет количества радиаторов отопления включает практически все нюансы и базируется на довольно точном определении потребности помещения в тепловой энергии.
Остается полученный результат разделить на значение теплоотдачи одной секции радиатора и полученный результат округлить до целого числа.
Некоторые производители предлагают более простой способ получить ответ. На их сайтах можно найти удобный калькулятор, специально предназначенный для того, чтобы сделать данные вычисления. Чтобы воспользоваться программой, нужно ввести необходимые значения в соответствующие поля, после чего будет выдан точный результат. Или же можно воспользоваться специальным софтом.
Когда получали квартиру не задумывались о том, какие у нас радиаторы и подходят ли они к нашему дому. Но со временем потребовалась замена и тут уже стали подходить с научной точки зрения. Так как мощности старых радиаторов явно не хватало. После всех вычислений пришли к выводу, что 12 достаточно. Но нужно еще учесть вот какой момент — если ТЕЦ плохо выполняет свою работу и батареи чуть теплые, то тут уже никакое количество вас не спасет.
Последняя формула для более точного расчета понравилась, но не понятен коэффициент К2. Как определить степень теплоизоляции стен? Например, стена толщиной 375мм из пеноблока “ГРАС”, это низкая или средняя степень? А если добавить снаружи стены 100мм плотного строительного пенопласта, это будет высокая, или все еще средняя?
Ок, последняя формула добротная вроде бы, окна учитываются, но а если в помещении еще и дверь есть наружная? А если это гараж в котором 3 окна 800*600 + дверь 205*85 + гаражные секционные ворота толщиной 45мм размерами 3000*2400?
Если делать для себя — я бы увеличил кол-во секций и поставил бы регулятор. И вуаля — мы уже значительно в меньшей степени зависим от прихотей ТЭЦ.
Главная » Отопление » Как рассчитать количество секций радиатора
Как собрать секционный радиатор своими руками
В продаже можно не найти сегментную батарею из нужного количества секций. Тогда есть возможность приобрести отдельные секции и собрать их воедино своими руками.
Их преимущество заключается в том, что владелец жилья всегда может увеличить или уменьшить теплоотдачу батарей, добавляя либо демонтируя секции. Вместе с сегментами приобретают фитинги (ниппели с внешней резьбой), кольцевые прокладки и соединительные патрубки.
Сборку осуществляют специальным ключом. Так, как секционная конструкция имеет множество стыковочных узлов, то некачественная сборка радиатора может стать причиной протечек в местах соединения секций. Поэтому свинчивать сегменты в одну конструкцию нужно очень аккуратно.