Солнечная батарея своими руками: пошаговое руководство, подробное видео

Как сделать источник питания из подручных материалов

Собрать простейшую батарейку можно из подручных элементов. Вариантов несколько, самые популярные такие:

  1. Берется кусок медной фольги и греется на электроплите полчаса, после остывания с поверхности удаляется оксидная пленка. Вырезается второй кусок такого же размера, оба элемента слегка подгибаются и ставятся в обрезанную бутылку или банку, чтобы не соприкасались между собой. На края крепятся крокодильчики, в емкость наливается соленая вода, после чего начнется выработка тока.
  2. Если под рукой есть много ненужных транзисторов, можно извлечь полупроводники из них и собрать солнечную батарею. Собранные элементы ставятся на пластину и соединяются, после чего подключается провод и можно пользоваться системой. Много энергии такой вариант не даст, но для работы радиоприемника и зарядки телефона его вполне хватит.
  3. Можно сделать источник питания из диодов, для этого их надо вскрыть, чтобы открыть фотоэлемент. Для извлечения элемент нагревается, чтобы расплавить припой. Извлеченные кристаллы припаивают к корпусу и соединяют в систему.
  4. Из пивных банок можно собрать конструкцию для нагревания воды или воздуха. Для этого в них вырезается верхняя часть, в нижней делается отверстие, тара хорошо моется. Затем делается большой короб из деревянного бруска и поликарбоната. Банки кладутся рядами и соединяются герметиком. После окрашивания поверхности в черный цвет можно поставить модуль на улицу.


Необычный вариант из пивных банок.

Банки проще всего прижимать длинными пластинками или брусками, размещаемыми через 50-80 см.

Солнечная батарея: что это вообще такое и как работает?

Солнечная батарея – это устройство, которое состоит из определённого набора солнечных элементов (фотоэлементов), которые преобразуют солнечную энергию в электроэнергию. Панели большинства солнечных батарея состоят из кремния так как этот материал имеет хороший КПД по “переработке” поступающего солнечного света.

Работают солнечные батареи следующим образом:

Фотоэлектрические кремниевые ячейки, которые запакованы в общую рамку (каркас) принимают на себя солнечный свет. Они нагреваются и частично поглощают поступающую энергию. Данная энергия сразу же освобождает электроны внутри кремния, которые по специализированным каналам поступают в специальный конденсатор, в котором накапливается электричество и перерабатываясь из постоянного в переменное поступает к устройствам в квартире/жилом доме.

Расчеты и проект

Устройство солнечной панели своими руками — несложная задача, главное, подойти к ее выполнению ответственно. Чтобы изготовить солнечную панель своими руками, следует подсчитать дневное потребление электроэнергии, затем узнать среднесуточное солнечное время в вашей местности и рассчитать нужную мощность. Таким образом, станет понятно, сколько ячеек и какого размера нужно приобрести. Ведь как было сказано выше, генерируемый ячейкой ток зависит от ее габаритов.

Зная необходимый размер ячеек и их количество, нужно рассчитать габариты и вес панели, после чего необходимо выяснить выдержит ли кровля или другое место, куда планируется установка солнечной батареи, задумываемую конструкцию.

Устанавливая панель, следует не только выбрать самое солнечное место, но и постараться закрепить ее под прямым углом к солнечным лучам.

Изготовление в домашних условиях

Для того чтобы готовая конструкция качественно выполняла свои функции и обеспечивала людей достаточным количеством электричества, необходимо правильно её изготовить. Для этого нужно учитывать много факторов и выбирать только высококачественные материалы.

Основные требования

Перед тем как своими руками сделать солнечную батарею, необходимо выполнить ряд подготовительных мероприятий и тщательно изучить все требования, предъявляемые к устройству. Это поможет получить работающую установку и упростить процесс её монтажа.

Чтобы солнечная панель работала на максимуме своих возможностей, необходимо соблюдать такие требования:

  1. Готовое изделие отличается повышенной хрупкостью, поэтому его нужно защитить специальным каркасом.
  2. Размер конструкции зависит от количества необходимой электроэнергии. При этом следует учитывать, что увеличение количества проводников приведёт к повышению массы батареи.
  3. В корпусе устройства должны быть предусмотрены боковые бортики небольшой величины. Всё это нужно для того, чтобы отбрасываемая ими тень закрывала минимальное рабочее пространство батареи.
  4. Конструкция устанавливается на открытом воздухе, поэтому будет подвергаться постоянному воздействию атмосферных явлений. Из-за этого внутренняя и внешняя часть корпуса должна быть покрыта качественной влагостойкой краской.
  5. В каркасе необходимо предусмотреть место для изготовления подложки.
  6. В нижней части панели нужно сделать небольшие отверстия для вентиляции. С их помощью будет выводиться газ, который образовывается в процессе работы батареи.

Материалы и инструменты

Наиболее важными деталями устройства считаются фотоэлементы. Производители предлагают покупателям только 2 их разновидности: из монокристаллического (КПД до 13%) и поликристаллического кремния (КПД до 9%).

Для изготовления панели понадобятся такие материалы и инструменты:

  • набор фотоэлементов;
  • крепёжные детали (метизы);
  • вакуумные подставки из силикона;
  • медные провода, способные работать при большой мощности;
  • алюминиевые уголки;
  • диоды Шоттки;
  • паяльное оборудование;
  • набор винтов;
  • прозрачный лист из плексигласа или поликарбоната.

Порядок действий

Для того чтобы сделать солнечные батареи своими руками в домашних условиях, необходимо соблюдать последовательность действий. Только в этом случае можно избежать ошибок и добиться желаемого результата.

Процесс изготовления панели прост и состоит из следующих этапов:

Берётся набор поли- или монокристаллических фотоэлементов и детали собираются в общую конструкцию. Их количество определяется исходя из требований владельцев дома.
На фотоэлементы наносятся контуры, образующиеся из олова припаянные проводники. Эта операция выполняется на ровной стеклянной поверхности при помощи паяльника.
По заранее подготовленной электрической схеме соединяются друг с другом все ячейки. При этом обязательно нужно подключить шунтирующие диоды. Идеальным вариантом для солнечной батареи будет использование диодов Шоттки, предотвращающих разрядку панели в ночное время.
Конструкция из ячеек перемещается на открытое пространство и тестируется на работоспособность. При отсутствии каких-либо проблем можно начинать сборку каркаса.
Для этих целей используются специальные уголки из алюминия, которые крепятся к элементам корпуса при помощи метизов.
На внутренние части реек наносится и равномерно распределяется тонкий слой силиконового герметика.
Поверх него кладётся лист из плексигласа или поликарбоната и плотно прижимается к контуру рамы.
Конструкция оставляется на несколько часов для полного высыхания силиконового герметика.
Как только этот процесс завершился, прозрачный лист дополнительно крепится к корпусу при помощи метизов.
Вдоль всей внутренней части получившейся поверхности помещаются выбранные фотоэлементы с проводниками

При этом важно оставлять небольшое расстояние (примерно 5 миллиметров) между соседними ячейками. Для упрощения этой процедуры можно заранее нанести необходимую разметку.
Установленные ячейки надёжно фиксируются на раме с помощью монтажного силикона, а панель полностью герметизируется

Всё это поможет увеличить срок работы солнечной батареи.
Изделие оставляется для высыхания нанесённой смеси и приобретает свой окончательный вид.

Какие фотоэлементы лучше всего подходят для солнечной батареи и где их можно найти

Изготовленные кустарным способом солнечные панели всегда будут находиться на шаг позади своих заводских собратьев, и на то есть несколько причин. Во-первых, известные производители тщательно отбирают фотоэлементы, отсеивая ячейки с нестабильными или сниженными параметрами. Во-вторых, при изготовлении гелиоэлектрических батарей используется специальное стекло с повышенным светопропусканием и сниженной отражающей способностью — найти такое в продаже практически невозможно. И в-третьих, прежде чем приступать к серийному выпуску, все параметры промышленных образцов обкатывают с использованием математических моделей. В итоге минимизируется влияние нагрева ячеек на КПД батареи, улучшается система отвода тепла, находится оптимальное сечение соединяющих шин, исследуются пути снижения скорости деградации фотоэлементов и т. д. Решать подобные задачи, не имея оборудованной лаборатории и соответствующей квалификации, невозможно.

Низкая стоимость самодельных солнечных батарей позволяет построить установку, позволяющую полностью отказаться от услуг энергокомпаний

Тем не менее сделанные своими руками солнечные батареи показывают неплохие результаты производительности и не так уж и сильно отстают от промышленных аналогов. Что же касается цены, то здесь мы имеем выигрыш более чем в два раза, то есть при одинаковых затратах самоделки дадут в два раза больше электроэнергии.

Учитывая всё вышесказанное, вырисовывается картина того, какие фотоэлементы подходят под наши условия. Плёночные отпадают по причине отсутствия в продаже, а аморфные — из-за короткого срока службы и низкого КПД. Остаются ячейки из кристаллического кремния. Надо сказать, что в первом самодельном устройстве лучше использовать более дешёвые «поликристаллы». И только обкатав технологию и «набив руку», следует переходить на монокристаллические ячейки.

Для обкатки технологий подойдут дешёвые некондиционные фотоэлементы — как и качественные устройства, их можно купить на зарубежных торговых площадках

Что касается вопроса, где взять недорогие солнечные элементы, то их можно найти на зарубежных торговых площадках типа Taobao, Ebay, Aliexpress, Amazon и др. Там они продаются как в виде отдельных фотоэлементов различных размеров и производительности, так и готовыми наборами для сборки солнечных панелей любой мощности.

Можно ли заменить фотоэлектрические пластины чем-то другим

Редко у какого домашнего мастера не найдётся заветной коробочки со старыми радиодеталями. А ведь диоды и транзисторы от старых приёмников и телевизоров являются всё теми же полупроводниками с p-n-переходами, которые при освещении солнечным светом вырабатывают ток. Воспользовавшись этими их свойствами и соединив несколько полупроводниковых приборов, можно сделать самую настоящую солнечную батарею.

Для изготовления маломощной солнечной батареи можно использовать старую элементную базу полупроводниковых приборов

Внимательный читатель сразу же спросит, в чём подвох. Зачем платить за фабричные моно- или поликристаллические ячейки, если можно использовать то, что лежит буквально под ногами. Как всегда, дьявол скрывается в деталях. Дело в том, что самые мощные германиевые транзисторы позволяют получить на ярком солнце напряжение не более 0.2 В при силе тока, измеряемой микроамперами. Для того чтобы достичь параметров, которые выдаёт плоский кремниевый фотоэлемент, понадобится несколько десятков, а то и сотен полупроводников. Сделанная из старых радиодеталей батарея сгодится разве что для зарядки кемпингового светодиодного фонаря или небольшого аккумулятора мобильного телефона. Для реализации более масштабных проектов, без покупных солнечных ячеек не обойтись.

Герметизация элементов и монтаж панели

Этот процесс – финальный этап создания солнечного источника энергии. Герметизация нужна, чтобы уменьшить негативное воздействие окружающей среды на элементы. Отличный герметик (его используют за границей) – компаунд, однако он стоит недешево. Поэтому для домашней панели подойдет и силиконовый, но довольно густой. Начните с фиксации системы в середине и по бокам, после этого залейте вещество в промежутки между элементами. На обратную сторону нанесите акриловый лак, смешанный с тем же силиконом.

Совет. Перед началом герметизации еще раз удостоверьтесь в хорошем качество пайки – протестируйте панель. Иначе потом внести изменения будет сложно.

Панель можно эксплуатировать такими способами:

  1. В электрическую цель включается инвертор, который будет преобразовывать постоянное напряжение от солнечной панели в переменное.
  2. Электрическая цель комплектуется аккумулятором (АКБ) и контроллером заряда АКБ. Они накапливают энергию от солнечной панели постоянно (в пределах вместимости АКБ), даже в тот момент, пока вы ею не пользуетесь.

Помните: вы всегда сможете нарастить количество элементов, расширив панель. Солнечная батарея будет максимально эффективной только на солнечной стороне дома. Предусмотрите возможность механического поворота и смены угла наклона, ведь солнце движется по небу, иногда его затягивают тучи

Также для эффективности важно, чтобы на устройство не налипал снег

Солнечная панель из простых алюминиевых банок

Невероятно практичная конструкция гелионагревателей создается из пивных или банок из под газировки. Стоит всего лишь набрать необходимое количество пустых алюминиевых банок.

Лучше не использовать жестяные пивные банки. Материал сильно подвержен коррозии и наделен низким показателем теплообмена.

Сборка банок в единую систему выглядит следующим образом:

  1. Подготовка банок. Каждая банка промывается, дно пивных банок пробивается для потока воздуха в целях сбора тепла.
  2. Производится обезжиривание поверхности банок.
  3. Подготовленные банки склеиваются друг на друга, как конструктор.

Каркас под теплообменник нужно изготовить из основы, деревянной рамы и оргстекла для лицевой отделки. Подложку основы лучше сделать из фольги. Ведь, как известно, установка подложки из фольги повышает светоотражающие качества основы.

Аккумулирование природного солнечного света является полезным действом, что касается экологии. К тому же производство солнечного света совершенно бесплатно и доступно на любом открытом участке дачи. И к тому же, такая приятная экономия денежных средств вас приятно удивит.

Разновидности солнечных батарей

Все солнечные панели могут быть кремниевыми или пленочными. Панели, основой для которых служит кремний, разделяются на типы:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Поликристаллическая солнечна батарея представляет собой квадратное устройство темно-синего цвета. Ее поверхность имеет вкрапления неоднородных кристаллов кремния. Несмотря на низкий КПД 18%, данное устройство обладает возможностью вырабатывать ток во время пасмурной погоды, что делает их незаменимыми в местностях, где преобладает рассеянный солнечный свет.

Монокристаллические преобразователи солнечной энергии представлены черными панелями со скошенными углами, для которых используется чистый кремний. Все ячейки устройства направлены в одну сторону, что позволяет получить максимальный КПД 25%. Недостатком таких батарей является то, что их лицевая сторона всегда должна быть обращена к солнцу. Если оно не успело взойти, спряталось за тучами и опустилось за горизонт, солнечные панели будут производить ток слабой мощности. Это самый дорогостоящий, но и обеспечивающий максимальную производительность, тип устройства.

Гибкая солнечная панель удобна в работе — ее легко можно прикрепить на неровные участки крыши

Каждая аморфная батарея состоит из множества тончайших слоев кремния, которые получаются путем напыления мельчайших частиц материала на стекло, пластмассу или фольгу. Такие слои достаточно быстро выгорают, что уже через полгода приводит к падению эффективности работы устройства на 15-20%. КПД таких преобразователей составляет всего 6%. Они являются самыми дешевыми и способны работать даже в пасмурную погоду. Однако максимальный срок их службы составляет 2 года.

В основе пленочных батарей лежит не твердая подложка из металла или стекла, а полимерная пленка. Поэтому они выпускаются в рулонах, что позволяет расстелить батареи на больших площадях. Благодаря своей конструкции, их можно разрезать на различные по форме и размеру части, разместить солнечные батареи на крышу дома с плавными изгибами. Они компактные и легкие. Рулонная панель обойдется значительно дешевле, чем кремниевая, для изготовления которой используется дорогостоящий материал. Однако такие модели менее мощные. Приобрести их сегодня достаточно непросто, поскольку производство только развивается.

Все солнечные батареи, независимо от типа устройства, оснащаются контроллерами, которые следят за степенью заряда панели. Они перераспределяют полученную энергию, направляя ее к источнику потребления напрямую или сохраняя в аккумуляторе.

Устанавливать стационарные солнечные панели стоит только с солнечной стороны дома

Устройство и принцип работы

Солнечная батарея – это несколько полупроводниковых фотоэлементов, преобразующих световую энергию в электричество. Ее работа основана на использовании барьерного фотоэффекта.

Принцип работы полупроводникового фотоэлемента

В месте соединения полупроводников разных типов проводимости (р и n) возникает электрическое поле, которое препятствует проникновению электронов из области с n-проводимостью в зону р-типа и «дырок» из участка полупроводника с р-проводимостью в участок с n-проводимостью. Если осветить такой кристалл, то элементарные частицы света фотоны будут выбивать электроны со своих орбит и генерировать электронно-дырочную пару.

При этом электроны, генерируемые в р слое рядом с р-n-переходом, под действием электрического поля барьера будут переходить в n-область. Аналогично «дырки», возникающие под действием света n-области, будут выноситься в зону с р-проводимостью. В результате в n-слое  возникнет избыток электронов, и, соответственно, эта область будет заряжена отрицательно. Соответственно, в p-слое появится избыток дырок и положительный заряд. На контактах пластины возникнет разность потенциалов. Отрицательное напряжение будет действовать на контакте, соединенном  с полупроводником n-типа, а положительное на другом выводе.

Как устроен фотоэлемент

Из чего состоит

Для изготовления солнечных батарей используют такие материалы:

  • кремний (Si);
  • германий (Ge);
  • арсенид галлия (GaAs);
  • селен (Se);
  • теллурид кадмия (CdTe).

Самое большое распространение получили солнечные элементы, изготовленные на основе кремния. Они отличаются хорошим КПД и сравнительно невысокой стоимостью.

Солнечные источники питания бывают трех видов: монокристаллические, поликристаллические и аморфные.

  1. Монокристаллические элементы сделаны из одного цельного кристалла кремния. Эти элементы изготавливают, разрезая искусственно выращенные кристаллы кремния. Их КПД находится в пределах от 13 до 25%. Они могут работать в течение 25 лет, однако, их коэффициент полезного действия со временем уменьшается. Такие элементы теряют свою эффективность при слабом освещении.
  2. Поликристаллические фотоэлементы изготавливают, расплавляя, а потом охлаждая кристалл кремния. КПД таких приборов находится в пределах от 9 до 18%. Срок их службы 10 лет, но при этом коэффициент полезного действия не уменьшается с течением времени. Эти модули могут работать даже в плохую погоду.
  3. Солнечные элементы на основе аморфного кремния изготавливают путем напыления полупроводника на основание из полимера. Такие элементы способны гнуться, поэтому их легко монтировать. Однако КПД у них небольшой от 5 до 10%, а срок службы не более 2-х лет. Неплохо работают при слабом освещении.

Более подробно читайте в статье: из чего состоит и как работает солнечная батарея.

Что такое солнечная батарея?

Солнечная батарея – это полупроводниковое устройство, которое преобразовывает солнечное излучение в электрическую энергию. Главной задачей такой системы является надежное, экономное и бесперебойное электроснабжение дома. Такие устройства целесообразно устанавливать в районах, где существуют перебои с подачей от основного источника электроэнергии.

Солнечная электростанция не эффективно работает ночью и в пасмурные дня, в то время как пик электропотребления приходится именно на вечерние часы

Главными преимуществами солнечной батареи являются:

  • простая установка устройства, которая не требует прокладывания кабелей к опорам;
  • система не требует больших временных затрат на свое обслуживание;
  • выработка электроэнергии не оказывает пагубного влияния на окружающую среду;
  • конструкция не имеет подвижных частей;
  • бесшумный режим работы;
  • поставка электроэнергии не зависит от распределительной сети;
  • длительный период эксплуатации системы при минимальных затратах.

Недостатки солнечной батареи:

  • процесс изготовления системы весьма трудоемкий;
  • солнечная панель занимает много места;
  • устройство очень чувствительно к загрязнению;
  • ночью батарея не работает;
  • эффективность работы устройства напрямую зависит от погодных условий, а именно от солнечных и пасмурных дней.

В зимнее время стоит позаботиться о возможности очистки солнечных панелей от изморози и снега

История создания и перспективы использования

Идею превращения энергии Солнца в электричество человечество вынашивало давно. Первыми появились гелиотермальные установки, в которых перегретый сконцентрированными солнечными лучами пар вращал турбины генератора. Прямое преобразование стало возможным лишь в середине XIX века, после того, как француз Александр Эдмон Баккарель открыл фотоэлектрический эффект. Попытки создать на основании этого явления действующую солнечную ячейку увенчались успехом лишь полвека спустя, в лаборатории выдающегося русского учёного Александра Столетова. Полностью описать механизм фотоэлектрического эффекта удалось ещё позже — человечество обязано этим Альберту Энштейну. К слову, именно за эту работу он получил Нобелевскую премию.

Баккарель, Столетов и Энштейн — вот те учёные, которые заложили фундамент современной солнечной энергетики

О создании первого солнечного фотоэлемента на основе кристаллического кремния возвестили мир сотрудники компании Bell Laboratories в далёком апреле 1954 года. Эта дата, по сути, и является отправной точкой технологии, которая в скором времени сможет стать полноценной заменой углеводородному топливу.

Преобразование солнечного излучения в электричество имеет огромные перспективы, ведь на каждый квадратный метр земной поверхности приходится в среднем 4.2 кВт/час энергии в день, а это экономия практически одного барреля нефти в год. Изначально используемая лишь для космической отрасли технология уже в 80-х годах прошлого века стала настолько обыденной, что фотоэлементы стали использовать в бытовых целях — в качестве источника питания калькуляторов, фотоаппаратов, светильников и т. д. Параллельно создавались и «серьёзные» гелиоэлектрические установки. Закреплённые на крышах домов, они позволяли полностью отказаться от проводного электричества. Сегодня можно наблюдать рождение электростанций, представляющих собой многокилометровые поля из кремниевых панелей. Вырабатываемая ими мощность позволяет питать целые города, поэтому можно с уверенностью говорить о том, что будущее — за солнечной энергетикой.

Современные солнечные электростанции представляют собой многокилометровые поля фотоэлементов, способные снабжать электричеством десятки тысяч домов

Это интересно: Системы безопасности для дома

Как сделать солнечную батарею из транзисторов или диодов?

Количество областей применения устройств, называемых солнечными батареями, увеличивается с каждым днем. Они находят все более широкое применение в военно-космических отраслях, промышленности, сельском хозяйстве, в быту. Несмотря на то что приобрести такую батарею по разумной цене становится все проще, интересно изготовить ее своими руками.

Схема подключения солнечной батареи к аккумуляторам.

Самодельная солнечная батарея из диодов или транзисторов — устройство, интересное не только с точки зрения практического применения, но и для понимания принципа ее работы. Причем для ее изготовления лучше использовать полупроводниковые приборы, выпущенные 30-40 лет назад.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий