Как посчитать объем воды в системе отопления
Расход воды в централизованных системах отопления рядовыми пользователями не учитывается. Но знать объем системы отопления, которая создается для оснащения отдельной квартиры (дома) необходимо. Эти данные помогут точнее определить несколько важных эксплуатационных параметров, о которых будет рассказано далее.
Для чего нужен расчет количества воды в системе отопления
При установке соответствующего оборудования в загородные частные дома многие хозяева предпочитают использовать специальные жидкости.
Качественный антифриз, со специальными добавками, предотвращает возникновение коррозийных процессов, что повышает долговечность металлических труб и других компонентов инженерной системы. Он не превращается в лед при низких температурах.
Это свойство пригодится при несанкционированном отключении оборудования, в иных аварийных ситуациях. Но такая жидкость стоит дороже воды, поэтому необходим точный расчет потребностей.
Второй задачей является уточнение объема емкости расширительного бака. Если она будет недостаточной в закрытых системах, то устройство не будет выполнять полноценно свои функции по компенсации расширения жидкости при нагреве.
Как определить количество воды экспериментально, сделать расчет
Самым простым способом узнать, сколько понадобится жидкости для заполнения системы, является опыт. После подключения дома нового отопительного оборудования открывается вентиль для их заполнения. Нужное значение будет получено, как результат показаний счетчика расхода воды. Второй вариант – обратное действие. Можно производить слив из системы, используя ведро, или другую емкость с известным объемом.
Понятно, что подобные операции допустимы только при наличии дома установленного оборудования. В действительности посчитать придется заранее, чтобы правильно определиться с параметрами соответствующего проекта. Далее будет рассмотрена правильная последовательность действий, которая поможет рассчитать объем теплоносителя:
- Выясняется количество жидкости, которое вмещает котел. Эти данные указываются в техническом паспорте на соответствующее изделие. Устройства проточного типа экономичнее. Но те, в которых используются накопительные емкости, способны быстро обеспечить потребителей горячей водой. В некоторых моделях котлов, работающих на твердом топливе, соответствующий объем достигает 50-ти литров.
- Далее суммируются аналогичные характеристики радиаторов отопления. Как правило, самые крупные – чугунные радиаторы. Для заполнения одной секции такого прибора может потребоваться не менее полутора литров жидкости.
- Емкость обвязки считают только с учетом данных по трубам. Чтобы произвести расчет используется следующая формула: V (объем жидкости для заполнения трубопровода) = П (3, 14 –число «Пи») х R 2 (радиус трубы во второй степени) х L (длина трубопровода).
- Последнее действие – суммирование имеющихся величин.
https://youtube.com/watch?v=GrYdSoMrDqc
Чтобы правильно рассчитать внутренний объем труб надо использовать только сопоставимые величины. Точный радиус вычисляется с использованием вычитания двойной ширины стенок. Приведем пример, который основан на следующих исходных данных:
- Длина труб: 12 метров.
- Диаметр (наружный): 24 мм.
- Толщина стенок : 2 мм.
Вначале надо рассчитать внутренний радиус: R = 24 — (2х2)/2 =10 мм.
Теперь можно использовать приведенную выше формулу: V = 3,14 х 10 2 /1000 х 12 = 3,768 литра. К этому значению прибавляют объемы котла и радиаторов отопления.
Какой должна быть величина емкости расширительного бака
Как правило, рассчитать точно эту величину надо, если предполагается создание дома отопительной системы закрытого типа. Чтобы получить искомое значение применяют следующую формулу: VR (объем расширительного бака) = (VO (общий объем, который рассчитывается по рассмотренной выше методике) х KR (коэффициент расширения жидкости)) / KE (коэффициент эффективности). KR принимается для воды равным 0,04 (антифриз – 0,044). KE – это показатель, который вычисляют с использованием формулы: KE = (PM (максимальное давление в системе) – PN (номинальное давление, при котором происходит наполнение бака))/ (PM+1).
https://youtube.com/watch?v=syF9KpsxZO8
Таким образом, чтобы выяснить количество незамерзающей жидкости для заполнения отопительной системы надо сложить все перечисленные выше объемы:
- котла;
- батарей;
- трубопровода;
- расширительного бака.
Как определить объем радиатора отопления
Теплоноситель в системе отопления – это не только водопроводная вода, которая закачивается внутрь за счет своего давления. К примеру, в загородных поселках нередко воду заливают в отопление ведрами, доставая ее из колодца или близлежащего водоема. Или вообще используют незамерзающие жидкости.
Второй вариант используется нечасто только из-за дороговизны материала, но тот, кто планирует проживать на даче или загородном коттедже только по выходным и праздникам, пользуется именно незамерзающими жидкостями, чтобы каждый раз не сливать теплоноситель из отопительной системы.
Поэтому расчет объема теплоносителя – важный показатель, в который входит объем радиатора отопления, объем труб и отопительного котла.
Емкость котла указана в паспорте изделия. Этот показатель будет в основном зависеть от мощности агрегата и его размеров. Объем труб можно определить из специальных таблиц, которых в Интернете большое количество. Мы тоже предлагаем такую таблицу:
Диаметр (мм) | Объем одного погонного метра (л) |
15 | 0,177 |
20 | 0,31 |
25 | 0,49 |
32 | 0,8 |
40 | 1,25 |
50 | 1,96 |
Чтобы определить общий объем необходимого теплоносителя, который будет помещаться только в трубы, необходимо измерить их общую длину и умножить на показатель из таблицы. Если вы пользуетесь проектом для сооружения отопительной системы, то все необходимые расчеты и замеры можно провести по нему.
Рассчитываем объем радиатора
Итак, остается только определить объем воды в радиаторе отопления. Как это можно сделать проще всего? Советуем опять-таки воспользоваться таблицами
Обращаем ваше внимание, что производители предлагают на рынке различные модели отопительных приборов
В модельной линейке могут оказаться радиаторы не только разной конструкции, но и разных размеров. В плане размерного ряда в основе лежит межосевое расстояние, то есть, это расстояние между осями двух коллекторов (верхнего и нижнего).
К тому же в настоящее время производители предлагают приборы на заказ, в которых используются индивидуальные эскизы и рисунки. С определением емкости этих батарей все намного сложнее.
Но давайте вернемся к данному показателю и покажем усредненные величины для приборов отопления. Берем модели вида 500 (межосевое расстояние).
- Чугунный радиатор ЧМ-140 старого образца – 1,7 литра объем одной секции.
- То же самое только нового образца – 1л.
- Стальной панельный прибор тип 11 (то есть, одна панель) – 0,25 л на каждые 10 см длины прибора. Измерение типа в количественном соотношении увеличивает объем теплоносителя на 0,25 л. То есть, тип 22 – 0,5 л, тип 33 – 0,75 л.
- Алюминиевая батарея – 0,45 л на каждую секцию.
- Биметаллический – 0,25 л.
В данном списке нет стальных трубчатых радиаторов. Даже приблизительный объем у этой модели определить будет непросто. Дело все в том, что производители используют для их изготовления трубы различных диаметров, отсюда и невозможность подобрать хотя бы усредненный вариант
Поэтому рекомендуем обращать внимание на паспортные данные, где показатель объема должен быть указан
Соотношение по типажу
Расчет объема опытным путем
А если такового показателя нет, что делать? Тогда рекомендуем найти объем батареи отопления практическим путем. Как это можно сделать:
- Устанавливаете три заглушки на радиатор.
- Ставите его на торец так, чтобы открытый патрубок находился сверху.
- Берете мерную емкость, к примеру, ведро или ковшик (то есть вы должны знать объем этой емкости, пусть даже приблизительный).
- Теперь заливаете вручную в батарею обычную воду, при этом считаете, сколько ведер вошло в отопительный прибор. Умножая количество на объем ведра, вы получаете объем теплоносителя в приборе.
Теперь хотелось бы затронуть тему, как влияет емкость батареи отопления на общую теплоотдачу отопительной системы. Здесь зависимость не прямая, а косвенная. Поясним суть дела. Многое будет зависеть от того, как сам теплоноситель будет двигаться по контурам: под действием физических законов (то есть, с естественной циркуляцией) или под искусственным давлением (под действием циркуляционного насоса).
Если выбран первый вариант, то оптимальное решение – радиаторы с большим объемом. Если второй, то тут разницы никакой нет. Давление создаст условия, при которых теплоноситель будет распределяться равномерно по всей сети, а, значит, равномерно распределиться и температура.
Как рассчитать мощность отопительного котла, зная объём отапливаемого помещения?
Тепловая мощность котла определяется по формуле:
Q = V × ΔT × K / 850
- Q – количество тепла в кВт/ч
- V – объём отапливаемого помещения в кубометрах
- ΔT – разница между температурой снаружи и внутри дома
- К – коэффициент потери тепла
- 850 – число, благодаря которому произведение трёх вышеуказанных параметров можно перевести в кВт/ч
Показатель К
может иметь следующие значения:
- 3-4 – если конструкция здания упрощённая и деревянная или если оно сделано из профлиста
- 2-2,9 – у помещения небольшая теплоизоляция. Такое помещение имеет простую конструкцию, длина 1 кирпича равна толщине стены, окна и крыша имеют упрощённую постройку
- 1-1,9 – конструкция здания считается стандартной. У таких домой двойная кирпичная вкладка и мало простых окон. Кровля крыши обычная
- 0,6-0,9 – конструкция здания считается улучшенной. Такое здание имеет окна с двойными стеклопакетами, основа пола толстая, стены кирпичные и имеют двойную теплоизоляцию, крыша имеет теплоизоляцию, сделанную из хорошего материала
Ниже приведена ситуация, в которой подбирается котел отопления по объему отапливаемого помещения.
Дом имеет площадь 200 м², высота его стен 3 м, теплоизоляция является первоклассной. Показатель температуры окружающего воздуха рядом с домом не падает ниже -25 °С. Получается, что ΔT = 20 — (-25) = 45 °С. Получается, чтобы узнать количество тепла, которое требуется для отопления дома, необходимо произвести следующий расчёт:
Q = 200 × 3 × 45 × 0,9/850 = 28,58 кВт/ч
Полученный результат пока что не следует округлять, ведь к котлу может быть еще подключена система горячего водоснабжения.
Если вода для мытья нагревается другим способом, то результат, который получен самостоятельно не нуждается в корректировке и эта стадия расчёта является завершающей.
Последовательность шагов расчета
Говоря о расчете системы отопления, отмечаем что эта процедура является наиболее неоднозначной и важной в части проектирования. Перед выполнением расчёта нужно произвести предварительный анализ будущей системы, например:
Перед выполнением расчёта нужно произвести предварительный анализ будущей системы, например:
- установить тепловой баланс во всех и конкретно каждой комнаты квартиры;
- одобрать терморегуляторы, клапаны и регуляторы давления;
- выбрать радиаторы, теплообменные поверхности, теплоотдающие панели;
- определить участки системы с максимальным и минимальным расходом носителя тепла.
Кроме того, надо определить общую схему транспортировки теплоносителя: полный и малый контур, однотрубная система или двухтрубная магистраль.
В результате проведения гидравлического расчёта получаем несколько важных характеристик гидравлической системы, которые дают ответы на следующие вопросы:
- какая должна быть мощность источника отопления;
- какой расход и скорость теплоносителя;
- какой нужен диаметр основной магистрали теплового трубопровода;
- какие возможные потери теплоты и самой массы теплоносителя.
Еще одним важным аспектом гидравлического расчёт является процедура баланса (увязки) всех частей (веток) системы во время экстремальных тепловых режимов с помощью регулирующих приборов.
Выделяют несколько основных видов отопительных изделий: чугунные и алюминиевые многосекционные, стальные панельные, биметаллические радиаторы и ковекторы. Но наиболее распространёнными являются алюминиевые многосекционные радиаторы
Расчетной зоной трубопроводной магистрали есть участок с постоянным диаметром самой магистрали, а также неизменяемым расходом горячей воды, который определён по формуле теплового баланса комнат. Перечисление расчётных зон начинается от насоса или источника тепла.
Влияние диаметра трубы на функциональность отопления
При качественных расчетах система с принудительной циркуляцией будет функционировать максимально эффективно. Поэтому стоит хорошо рассчитать вероятные тепловые потери и попробовать их минимизировать.
В противном случае даже при больших затратах энергии эффективность работы трубопровода будет не полная, то есть отопительная система не будет полностью справляться с поставленной задачей.
То, что размер сечения оказывает влияние на гидродинамику – это правда. И если некоторые считают, что чем больше ∅, тем эффективнее работа, то они сильно заблуждаются.
Если использование образцов большого диаметра не оправдано, то давление сильно падает, что приводит к тому, что отопление совсем пропадает.
Если решили проводить отопление в частном доме, то тут надо определиться с тем, как будет подаваться вода. Если от центральной магистрали, то расчет проводится таким же образом, как и для квартиры.
Если имеется своя автономная система отопления, то диаметр труб надо подбирать исходя из того какой материал использовался для ее изготовления и вида самой системы.
Некоторые нюансы, определяющие выбор
Диаметры бывают:
- внутренними (основополагающий показатель размера трубы);
- внешними (основополагающий показатель определяющий класс изделия);
- условными (это значение округляется и переводится в дюймы).
Внешний диаметр бывает – малым, средним и большим.
Как рассчитать оптимальный размер без калькулятора?
Когда необходимо рассчитать подходящий размер сечения трубы отопления, то следует придерживаться определенных рекомендаций.
Смотреть видео
Профессиональные сантехники уверяют, что в отоплении с принудительной циркуляцией лучше выбирать минимальный диаметр труб насколько это возможно. Такое решения вполне обосновано.
Минимальное сечение позволяет минимизировать поток движения теплоносителя. Также отопительная система, состоящая из труб небольшого сечения, легче поддается монтажу и является более выгодной, если говорить о финансовых тратах.
Но такие решения не должны заставлять покупателей вопреки проведенному расчету приобретать составляющие элементы меньшего диаметра, чем получается в результате проведенного расчета.
При установке образцов меньшего сечения, чем надо система будет работать с большим шумом и станет неэффективной.
В идеале для подбора подходящего диаметра трубы для отопления, надо ориентироваться на движение воды по трубопроводу. Самыми подходящими будут значения, что находятся на интервале от 0,3 до 0,7м/с. Рекомендуется отталкиваться именно от них.
Расчет мощности отопления без калькулятора
Эти расчеты проводятся по специально выведенной формуле. Чтобы получить требуемую мощность отопления с обычной или принудительной циркуляцией теплоносителя метраж частного дома или квартиры умножается на коэф-нт теплопотери, затем умножаем полученное значение на число, которое выходит при подсчете разницы максимальной температуры зимой на улице и внутри частного дома, затем данное значение делим на 860.
Смотреть видео
Коэф-нт теплопотери берем исходя из того, какой материал использовался во время строения, учитывая при этом, каким пользовались утеплителем.
Если все параметры близки к стандартным, то расчет проводиться, беря за основу усредненные значения. Если отопление рассчитывается для помещения без теплоизоляции, то берем коэффициент 4.
Кирпичное помещение с кладкой в один кирпич с множеством оконных проемов считается местом с низкой изоляцией и для него используется коэффициент – 2,5.
Стандартная кирпичная постройка с толстыми стенами без дополнительного утепления относится к средней степени теплоизоляции и для расчета используется коэффициент – 1,5.
К высокой степени изоляции относится строение из кирпичной клади с двухсторонним утеплением и с встроенными стеклопакетами с энергосохраняющими свойствами. В этом случае используется коэффициент – 1.
Если остановится подробнее на скорости воды в трубах отопления, то она не должна продвигаться со скоростью менее 0,2м/с иначе вода начнет выделять воздух, который образует воздушные пробки и нарушит всю работу.
А если теплоноситель будет двигаться со скоростью более 1,5 м/с, то процесс движения будет очень шумным и находиться в таком месте станет не комфортным для жильцов.
Рекомендуется не доводить до крайних границ, а придерживаться среднего значения. Если нужно увеличить скорость передвижения теплоносителя, томожно воспользоваться специальным насосом при установке системы с принудительной циркуляцией.
Расчет гидравлики системы отопления
Нам потребуются данные теплового расчёта помещений и аксонометрической схемы.
Вынесите данные в эту таблицу:
Шаг 1: считаем диаметр труб
В качестве исходных данных используются экономически обоснованные результаты теплового расчёта:
1а. Оптимальная разница между горячим (tг) и охлаждённым( tо) теплоносителем для двухтрубной системы – 20º
Δtco=tг- tо=90º-70º=20ºС
1б. Расход теплоносителя G, кг/час — для однотрубной системы.
2. Оптимальная скорость движения теплоносителя – ν 0,3-0,7 м/с.
Чем меньше внутренний диаметр труб — тем выше скорость. Достигая отметки 0,6 м/с, движение воды начинает сопровождаться шумом в системе.
3. Расчётная скорость теплопотока – Q, Вт.
Выражает количество тепла (W, Дж), переданного в секунду (единицу времени τ):
Формула для расчёта скорости теплопотока
4. Расчетная плотность воды: ρ = 971,8 кг/м3 при tср = 80 °С
5. Параметры участков:
- зависимость скорости движения воды — ν, с
- теплового потока — Q, Вт
- расхода воды G, кг/час от внутреннего диаметра труб
Пример
Задача: подобрать диаметр трубы для отопления гостиной площадью 18 м², высота потолка 2,7 м.
- расход мощности – 1 кВт на 30 м³
- запас тепловой мощности – 20%
Расчёт:
- объём помещения: 18 * 2,7 = 48,6 м³
- расход мощности: 48,6 / 30 = 1,62 кВт
- запас на случай морозов: 1,62 * 20% = 0,324 кВт
- итоговая мощность: 1,62 + 0,324 = 1,944 кВт
Находим в таблице наиболее близкое значения Q:
Получаем интервал внутреннего диаметра: 8-10 мм. Участок: 3-4. Длина участка: 2.8 метров.
Шаг 2: вычисление местных сопротивлений
Чтобы определиться с материалом труб, необходимо сравнить показатели их гидравлического сопротивления на всех участках отопительной системы.
Факторы возникновения сопротивления:
Трубы для отопления
- в самой трубе:
- шероховатость;
- место сужения/расширения диаметра;
- поворот;
- протяжённость.
- в соединениях:
- тройник;
- шаровой кран;
- приборы балансировки.
Расчетным участком является труба постоянного диаметра с неизменным расходом воды, соответствующим проектному тепловому балансу помещения.
Для определения потерь берутся данные с учётом сопротивления в регулирующей арматуре:
- длина трубы на расчётном участке/l,м;
- диаметр трубы расчётного участка/d,мм;
- принятая скорость теплоносителя/u, м/с;
- данные регулирующей арматуры от производителя;
- справочные данные:
- коэффициент трения/λ;
- потери на трение/∆Рl, Па;
- расчетная плотность жидкости/ρ = 971,8 кг/м3;
- технические характеристики изделия:
- эквивалентная шероховатость трубы/kэ мм;
- толщина стенки трубы/dн×δ, мм.
Для материалов со сходными значениями kэ производители предоставляют значение удельных потерь давления R, Па/м по всему сортаменту труб.
Для поиска гидросопротивления/ΔP в одном участке сети подставляем данные в формулу Дарси-Вейсбаха:
Шаг 3: гидравлическая увязка
Для балансировки перепадов давления понадобится запорная и регулирующая арматура.
- проектная нагрузка (массовый расход теплоносителя — воды или низкозамерзающей жидкости для систем отопления);
- данные производителей труб по удельному динамическому сопротивлению/А, Па/(кг/ч)²;
- технические характеристики арматуры.
- количество местных сопротивлений на участке.
Задача: выровнять гидравлические потери в сети.
В гидравлическом расчёте для каждого клапана задаются установочные характеристики (крепление, перепад давления, пропускная способность). По характеристикам сопротивления определяют коэффициенты затекания в каждый стояк и далее — в каждый прибор.
Фрагмент заводских характеристик поворотного затвора
Выберем для вычислений метод характеристик сопротивления S,Па/(кг/ч)².
Потери давления/∆P, Па прямо пропорциональны квадрату расхода воды по участку/G, кг/ч:
- ξпр — приведенный коэффициент для местных сопротивлений участка;
- А — динамическое удельное давление, Па/(кг/ч)².
Удельным считается динамическое давление, возникающее при массовом расходе 1 кг/ч теплоносителя в трубе заданного диаметра (информация предоставляется производителем).
Σξ — слагаемое коэффициентов по местным сопротивлениям в участке.
Приведенный коэффициент:
Шаг 4: определение потерь
Гидравлическое сопротивление в главном циркуляционном кольце представлено суммой потерь его элементов:
- первичного контура/ΔPIк ;
- местных систем/ΔPм;
- теплогенератора/ΔPтг;
- теплообменника/ΔPто.
Сумма величин даёт нам гидравлическое сопротивление системы/ΔPсо:
Объем воды в системе отопления: как посчитать и на что он влияет?
Объем воды в системе отопления
Многие из нас, сталкиваясь с установкой или реконструкцией системы отопления задаются вопросом, а как посчитать сколько воды в системе отопления?
Ответ простой – берем лист бумаги, ручку и калькулятор. Прежде всего нужно понимать, что общий объем будет равняться сумме объемов каждого элемента системы. Ниже мы приведем значения для наиболее распространенных элементов.
Подсчет теплоносителя в радиаторах:
- 11 тип – 0,25 л на каждые 10 см длинны радиатора (для моделей радиаторов высотой 500 мм)
- 22 тип – 0,5 л на каждые 10 см длинны радиатора (для моделей радиаторов высотой 500 мм)
Если нужно вычислить объем для радиаторов не стандартной высоты (например 300, 400, 600 мм), — используйте метод интерполирования. Например, объем радиатора отопления 22 типа высотой 300 = 0,5 л / 500 * 300 = 0,3 л. В зависимости от производителя данные могут колебаться, но не значительно.
Для секционных радиаторов:
Количество теплоносителя в трубах:
- диам. 20 мм – 0,17 л/метр погонный трубы
- диам. 25 мм – 0,3 л/м
- диам. 32 мм –
- диам. 40 мм –
- диам. 50 мм –
- диам. 1/2 дюйма (15 мм) – л/метр погонный трубы
- диам. 3/4 дюйма (20 мм) –
- диам. 1 дюйм (25 мм) –
- диам. 1,5 дюйма (40 мм) –
- диам. 2 дюйма (50 мм) –
Объем воды в котле
Для напольных и парапетных, в зависимости от мощности и соответственно размера котла, значение колеблется в пределах 10-30 литров. Более точно можно посмотрев в характеристиках самого аппарата.
Таким нехитрым способом, сложив все значения. мы можем определить объем системы.
Обратите внимание:
Целесообразным подсчет количества теплоносителя в системе будет в случае, если:
- мы определяем какого объема нам нужен расширительный бак
- сколько теплоносителя нам нужно (если заливаем антифриз)
- мы выбираем циркуляционный насос
- теоретически допускаю, что что-то упустил. Если вы это обнаружили, пишите в почту обязательно учту!
Категорически нет смысла считать объем, чтобы:
- посчитать на сколько меньше станет потребление газа в случае замены труб на радиаторы (зависимость есть, но не прямо пропорциональная, расчет не будет корректным).
- выбрать мощность котла. Выбирать котел, отталкиваясь от количества воды в системе — не логично. Ведь конечная наша цель обеспечить не нагрев воды, а возмещение тепловых потерь, которые несет наше здание.
Вот таким нехитрым способом производится расчет объема теплоносителя в системе отопления. Надеюсь статья была полезна. Тепла Вам и уюта!
Объем воды или теплоносителя в различных трубопроводах, таких как полиэтилен низкого давления (ПНД труба) полипропиленовые трубы, металлопластиковые трубы, стальные трубы, необходимо знать при подборе какого либо оборудования, в частности расширительного бака.
К примеру в металлопластиковой трубе диаметр 16 в метре трубы 0,115 гр. теплоносителя.
Вы знали? Скорее всего нет. Да и вам собственно зачем это знать, пока вы не столкнулись с подбором, к примеру расширительного бака. Знать объем теплоносителя в системе отопления необходимо не только для подбора расширительного бака, но и для покупки антифриза. Антифриз продается в неразбавленном до -65 градусов и разбавленном до -30 градусов виде. Узнав объем теплоносителя в системе отопления вы сможете купить ровное количество антифриза. К примеру, неразбавленный антифриз необходимо разбавлять 50*50 (вода*антифриз), а значит при объеме теплоносителя равном 50 литров, вам необходимо будет купить всего 25 литров антифриза.
Предлагаем вашему вниманию форма расчета объёма воды (теплоносителя) в трубопроводе и радиаторах отопления. Введите длину трубы определенного диаметра и моментально узнаете сколько в этом участке теплоносителя.
Гидравлические сопротивления и их расчет
Виды гидравлических сопротивлений
При движении жидкости в трубе между нею и стенками трубы возникают дополнительные силы сопротивлении, в результате чего частицы жидкости, прилегающие к поверхности трубы, тормозятся. Это торможение благодаря вязкости жидкости передается следующим слоям, отстоящим далее от поверхности трубы, причем скорость движения частиц по мере удаления их от оси трубы постепенно уменьшается.
Равнодействующая сил сопротивления Т направлена в сторону, противоположную движению жидкости, и параллельна направлению движения. Это и есть силы гидравлического трения (сопротивления гидравлического трения).
Для преодоления сопротивления трения и поддержания равномерного поступательного движения жидкости необходимо, чтобы на жидкость действовала сила, направленная в сторону ее движения и равная силе сопротивления, т. е. необходимо затрачивать энергию. Энергию или напор, необходимый для преодоления сил сопротивления, называют потерянной энергией или потерянным напором.Потери напора, затрачиваемые на преодоление сопротивления трения, носят название потерь напора на трение или потерь напора по длине потока(линейные потери напора) и обозначаются обычно hтр.
Однако трение является не единственной возможной причиной, вызывающей потери напора. Резкое изменение сечения также оказывает сопротивление движению жидкости (так называемое сопротивление формы) и вызывает потери энергии. Существуют и другие причины, вызывающие потери напора, например внезапное изменение направления движения жидкости. Потери напора, вызываемые резким изменением конфигурации границ потока (затрачиваемые на преодоление сопротивления формы), называют местными потерями напора или потерями напора на местные сопротивления и обозначаются через hм.
Таким образом, потери напора при движении жидкости складываются из потерь напора на трение и потерь на местные сопротивления, т. е.:
hS = hтр + hм
Потери напора при равномерном движении жидкости в трубах
Найдем общее выражение для потерь напора на трение при равномерном движении жидкости в трубах, справедливое как для ламинарного, так и для турбулентного режимов.
При равномерном движении величина средней скорости и распределение скоростей по сечению остаются неизменными по всей длине трубопровода. Поэтому равномерное движение возможно лишь в трубах постоянного сечения S, так как в противном случае будет изменяться средняя скорость в соответствии с уравнением:
v = Q/S = const
Равномерное движение имеет место в прямых трубах или в трубах с очень большим радиусом кривизны R(прямолинейное движение), так как в противном случае средняя скорость может изменяться по направлению. Кроме того, условие неизменности характера скоростей жидкости по живому сечению можно записать в виде α= const, где α – коэффициент Кориолиса. Последнее условие может быть соблюдено лишь при достаточном удалении рассматриваемого участка потока от входа в трубу.
Если выделить на участке трубы с равномерно текущей жидкостью два произвольных сечения 1 и 2, то потери напора при перемещении жидкости между этими сечениями можно описать при помощи уравнения Бернулли:
z1 + p1/γ = z2 + p2/γ +hтр
где: z1 и z2 – перепад высот между центрами соответствующих сечений;p1 и p2 – давление жидкости в соответствующих сечениях;γ – удельная плотность жидкости, γ = gρ;hтр – величина потерянной энергии (потери на трение).
Из этой формулы выразим величину потерянной энергии hтр:
hтр = (z1 + p1/γ) — (z2 + p2/γ)
Это выражение называют уравнением равномерного движения жидкости в трубопроводе. Если труба расположена горизонтально, т. е. перепад высот между ее сечениями отсутствует, то уравнение примет упрощенный вид:
hтр = p1/γ — p2/γ = (p1 – p2)/γ