Пример №1
Необходимо определить правильное количество секций для радиатора М140-А, который будет установлен в помещении, расположенном на верхнем этаже. При этом стена наружная, под подоконником ниша отсутствует. А расстояние от него до радиатора составляет всего 4 см. Высота помещения 2,7 м. Qn=1410 Вт, а tв=18 °С. Условия подключения радиатора: подсоединения к однотрубному стояку проточно-регулируемого типа (Dy20, кран КРТ с подводкой 0,4 м); разводка отопительной системы верхняя, tг = 105°С, а расход теплоносителя по стояку составляет Gст = 300 кг/ч. Разница температуры теплоносителя подающего стояка и рассматриваемого составляет 2°С.
Определяем средний показатель температуры в радиаторе:
tср = (105 — 2) — 0,5х1410х1,06х1,02х3,6 / (4,187х300) = 100,8 °С.
Опираясь на полученные данные, вычисляем плотность теплового потока:
tср = 100,8 — 18 = 82,8 °С
При этом следует отметить, что произошло незначительное изменение уровня расхода воды (360 до 300 кг/ч). Данный параметр практически никак не влияет на qnp.
Qпр =650(82,8/70)1+0,3=809Вт/м2.
Далее определяем уровень теплоотдачи горизонтально (1г = 0,8 м) и вертикально (1в = 2,7 — 0,5 = 2,2 м) расположенных труб. Для этого следует воспользоваться формулой Qтр =qвхlв + qгхlг.
Получаем:
Qтр = 93х2,2 + 115х0,8 = 296 Вт.
Рассчитываем площадь требуемого радиатора по формуле Ap = Qnp/qnp и Qпp = Qп — µ трхQтр:
Ар =(1410-0,9х296)/809=1,41м2.
Рассчитываем необходимое количество секций радиатора М140-А, учитывая, что площадь одной секции составляет 0,254 м2:
м2 (µ4=1,05, µ 3 = 0,97 + 0,06 / 1,41= 1,01, воспользуемся формулой µ 3 = 0,97 + 0,06 / Ар и определяем:
N=(1,41/0,254)х(1,05/1,01)=5,8.
То есть, расчет потребления тепла на отопление показал, что в помещении для достижения максимально комфортной температуры следует установить радиатор, состоящий из 6 секций.
Для чего нужен расчет
Чтобы сэкономить на отоплении и способствовать созданию здорового микроклимата в помещении, нужно правильно рассчитать толщину стен и утеплительных материалов, которые будем использовать при строительстве. По закону физики, когда на улице холодно, а в помещении тепло, то через стену и кровлю тепловая энергия выходит наружу.
Если неправильно рассчитать толщину стен, сделать их слишком тонкими и не утеплить, это приведет к негативным последствиям:
- зимой стены будут промерзать;
- на обогрев помещения будут затрачиваться значительные средства;
- сместиться точка росы, что приведет к образованию конденсата и влажности в помещении, заведется плесень;
- летом в доме будет так же жарко, как и под палящим солнцем.
Расчет системы воздушного отопления — простая методика
Проектирование воздушного отопления не простая задача. Для ее решения необходимо выяснить ряд факторов, самостоятельное определение которых может быть затруднено. Специалисты компании РСВ могут бесплатно сделать для вас предварительный проект по воздушному отоплению помещения на основе оборудования ГРЕЕРС.
Система воздушного отопления, как и любая другая, не может быть создана наобум. Для обеспечения медицинской нормы температуры и свежего воздуха в помещении потребуется комплект оборудования, выбор которого основывается на точном расчете. Существует несколько методик расчета воздушного отопления, разной степени сложности и точности. Обычная проблема расчетов такого типа состоит в отсутствии учета влияния тонких эффектов, предусмотреть которые не всегда имеется возможность
Поэтому производить самостоятельный расчет, не будучи специалистом в сфере отопления и вентиляции, чревато появлением ошибок или просчетов. Тем не менее, можно выбрать наиболее доступный способ, основанный на выборе мощности системы обогрева.
Формула определения теплопотерь:
Q=S*T/R
Где:
- Q — величина теплопотерь (вт)
- S — площадь всех конструкций здания (помещения)
- T — разница внутренней и внешней температур
- R — тепловое сопротивление ограждающих конструкций
Пример:
Здание площадью 800 м2 (20×40 м), высотой 5 м, имеется 10 окон размером 1,5×2 м. Находим площадь конструкций: 800 + 800 = 1600 м2 (площадь пола и потолка) 1,5 × 2 × 10 = 30 м2 (площадь окон) (20 + 40) × 2 × 5 = 600 м2 (площадь стен). Вычитаем отсюда площадь окон, получаем «чистую» площадь стен 570 м2
В таблицах СНиП находим тепловое сопротивление бетонных стен, перекрытия и пола и окон. Можно определить его самостоятельно по формуле:
Где:
- R — тепловое сопротивление
- D — толщина материала
- K — коэффициент теплопроводности
Для простоты примем толщину стен и пола с потолком одинаковой, равной 20 см. Тогда тепловое сопротивление будет равно 0,2 м / 1,3= 0,15 (м2*К)/Вт Тепловое сопротивление окон выберем из таблиц: R = 0,4 (м2*К)/Вт Разницу температур примем за 20°С (20°С внутри и 0°С снаружи).
Тогда для стен получаем
- 2150 м2 × 20°С / 0,15 = 286666=286 кВт
- Для окон: 30 м2 × 20°С/ 0,4 = 1500=1,5 кВт.
- Суммарные теплопотери: 286 + 1,5 = 297,5 кВт.
Такова величина теплопотерь, которые необходимо компенсировать при помощи воздушного отопления мощностью около 300 кВт
Примечательно, что при использовании утепления пола и стен теплопотери снижаются как минимум на порядок.
Теплотехнический калькулятор
λA = | Вт/(м °С) |
λB = | Вт/(м °С) |
Плотность | кг/м 3 |
Кратность | мм |
Паропроницание | мг / (м·ч·Па) |
Δw | % |
Шаг каркаса, s | мм |
Ширина элемента каркаса, a | мм |
λkА каркаса | Вт/(м °С) |
λkБ каркаса | Вт/(м °С) |
Шаг каркаса, s | мм |
Ширина элемента каркаса, a | мм |
λkА каркаса | Вт/(м °С) |
λkБ каркаса | Вт/(м °С) |
Длина блока, a | мм |
Высота блока, b | мм |
Толщина швов, c | мм |
λkА шва | Вт/(м °С) |
λkБ шва | Вт/(м °С) |
λсвА арматуры | Вт/(м °С) |
λсвБ арматуры | Вт/(м °С) |
Площадь сечения, Sсв ср | мм 2 |
Площадь сечений связей (арматуры), приходящихся на 1 погонный метр сечения шва. Включает только те связи, которые перпендикулярны плоскости стены. |
Диаметр выреза, d | мм |
Расстояние между вырезами, s | мм |
Толщина плиты, δ | мм |
Размер, a | мм |
Размер, h | мм |
Толщина листа, δ | мм |
Пожалуйста, выберите материал.
Учет тепла на подогрев воздуха
Выполняя расчет теплопотерь здания, важно учесть количество тепловой энергии, расходуемой системой отопления на подогрев вентиляционного воздуха. Доля этой энергии достигает 30% от общих потерь, поэтому игнорировать ее недопустимо
Рассчитать вентиляционные теплопотери дома можно через теплоемкость воздуха с помощью популярной формулы из курса физики:
Qвозд = cm (tв — tн). В ней:
- Qвозд — тепло, расходуемое системой отопления на прогрев приточного воздуха, Вт;
- tв и tн — то же, что в первой формуле, °С;
- m — массовый расход воздуха, попадающего в дом снаружи, кг;
- с — теплоемкость воздушной смеси, равна 0.28 Вт / (кг °С).
Здесь все величины известны, кроме массового расхода воздуха при вентиляции помещений. Чтобы не усложнять себе задачу, стоит согласиться с условием, что воздушная среда обновляется во всем доме 1 раз в час. Тогда объемный расход воздуха нетрудно посчитать путем сложения объемов всех помещений, а затем нужно перевести его в массовый через плотность. Поскольку плотность воздушной смеси меняется в зависимости от его температуры, нужно взять подходящее значение из таблицы:
Температура воздушной смеси, ºС | — 25 | — 20 | — 15 | — 10 | — 5 | + 5 | + 10 | |
Плотность, кг/м3 | 1,422 | 1,394 | 1,367 | 1,341 | 1,316 | 1,290 | 1,269 | 1,247 |
Пример. Необходимо просчитать вентиляционные теплопотери здания, куда поступает 500 м³ в час с температурой -25°С, внутри поддерживается +20°С. Сначала определяется массовый расход:
m = 500 х 1,422 = 711 кг/ч
Подогрев такой массы воздуха на 45°С потребует такого количества теплоты:
Qвозд = 0.28 х 711 х 45 = 8957 Вт, что примерно равно 9 кВт.
По окончании расчетов результаты тепловых потерь сквозь наружные ограждения суммируются с вентиляционными теплопотерями, что дает общую тепловую нагрузку на систему отопления здания.
Представленные методики вычислений можно упростить, если формулы ввести в программу Excel в виде таблиц с данными, это существенно ускорит проведение расчета.
Пример теплотехнического расчета каркасного дома площадью 100 м2
Дом 10х10м, высота потолка 3 м, площадь 100 м2, объем 300 м3, площадь поверхности стен, потолка и пола 320м2.
Для утепления стен, потолка и пола используем 150мм минеральной ваты с теплопроводностью 0.038 Вт/м/С.
Площадь окон 10% от площади стен. Теплопроводность окон 0.056 Вт/м/С.
Одна дверь площадью 4 м2 с теплопроводностью 0.147 Вт/м/С.
Площадь каркаса 5% от площади стен, потолка и пола. Теплопроводность каркаса 0.147 Вт/м/С.
Приток воздуха с улицы (инфильтрация) 30 м3/час.
Расчет тепловой нагрузки каркасного дома 100 м2
Для обогрева каркасного дома 100 м2 потребуется 6.6 кВт/ч тепловой энергии.
Расчет системы отопления дома
Расчёт систем отопления частного дома – самое первое, с чего начинается проектирование такой системы. Мы будем говорить с вами о системе воздушного отопления – именно такие системы проектирует и устанавливает наша компания как в частных домах, так и в коммерческих зданиях и производственных помещениях. Отопление воздухом имеет массу преимуществ по сравнению с традиционными системами водяного отопления – более подробно об этом вы можете прочитать здесь. |
Расчет системы – калькулятор онлайн
Для чего необходим предварительный расчет отопления в частном доме? Это требуется для выбора правильной мощности необходимого отопительного оборудования, позволяющей реализовать систему отопления, сбалансировано обеспечивающую теплом соответствующие помещения частного дома. Грамотный выбор оборудования и правильный расчёт мощности системы отопления частного дома позволят рационально компенсировать теплопотери от ограждающих конструкций и притока уличного воздуха на нужды вентиляции. Сами формулы для такого расчета достаточно сложны – поэтому мы предлагаем Вам воспользоваться онлайн расчетом (выше), или заполнив анкету (ниже) – в таком случае расчет произведет наш главный инженер, и эта услуга – совершенно бесплатная.
Как рассчитать отопление частного дома?
С чего начинается такой расчет? Во-первых, требуется определить максимальные теплопотери объекта (в нашем случае – это частный загородный дом) при наихудших погодных условиях (такой расчет ведется с учетом самой холодной пятидневки для данного региона). Рассчитывать систему отопления частного дома на коленке не получится – для этого используют специализированные формулы расчета и программы, позволяющие построить расчет на основе исходных данных о конструкции дома (стен, окон, кровли и т.д.). В результате полученных данных выбирается оборудование, полезная мощность которого должна быть больше или равна рассчитанному значению. В ходе расчёта системы отопления выбирается нужная модель канального воздухонагревателя (обычно это газовый воздухонагреватель, хотя мы можем использовать и другие типы обогревателей – водяной, электрический). Затем вычисляется максимальная производительность обогревателя по воздуху – иными словами, какой объем воздуха вентилятор данного оборудования нагнетает в единицу времени. Следует помнить, что производительность оборудования отличается в зависимости от предусмотренного режима его использования: так, например, при кондиционировании производительность больше, чем при отоплении. Поэтому если в перспективе планируется использовать кондиционер, то за исходное значение нужной производительности необходимо принимать расход воздуха именно в этом режиме – если же нет, то достаточно только значения в режиме отопления.
На следующем этапе расчёт систем воздушного отопления частного дома сводится к правильному определению конфигурации воздухораспределительной системы и расчёту сечений воздуховодов. Для наших систем мы используем бесфланцевые прямоугольные воздуховоды прямоугольного сечения – они просты в сборке, надежны и удобно располагаются в пространстве между конструктивными элементами дома. Поскольку воздушное отопление является низконапорной системой, то при ее построении необходимо учитывать определённые требования, например, минимизировать количество поворотов воздуховода – как магистрального, так и оконечных веток, идущих к решёткам. Статическое сопротивление трассы не должно превышать 100 Па. На основе производительности оборудования и конфигурации воздухораспределительной системы рассчитывается нужное сечение магистрального воздуховода. Количество оконечных веток определяется исходя из количества подающих решёток, необходимых для каждого конкретного помещения дома. В системе воздушного отопления дома обычно используются стандартные подающие решётки размером 250х100 мм с фиксированной пропускной способностью – она вычисляется с учетом минимальной скорости движения воздуха на выходе. Благодаря такой скорости в помещениях дома не ощущается движение воздуха, отсутствуют сквозняки и посторонний шум.
Конечная стоимость отопления частного дома рассчитывается после окончания этапа проектирования на основании спецификации с перечнем устанавливаемого оборудования и элементов системы воздухораспределения, а также дополнительных устройств контроля и автоматики. Чтобы произвести первоначальный расчет стоимости отопления, вы можете воспользоваться анкетой на расчет стоимости системы отопления ниже: |
онлайн-калькулятором
Пример №2
Необходимо определить марку открытого настенного конвектора с кожухом КН-20к «Универсал-20», который устанавливается на однотрубный стояк проточного типа. Кран возле устанавливаемого прибора отсутствует.
Определяет среднюю температуру воды в конвекторе:
tcp = (105 — 2) — 0,5х1410х1,04х1,02х3,6 / (4,187х300) = 100,9 °С.
В конвекторах «Универсал-20» плотность теплового потока равна 357 Вт/м2.имеющиеся данные: µtcp=100,9-18=82,9°С, Gnp=300кг/ч. По формуле qпр =qном(µ tср /70)1+n (Gпр /360)p пересчитываем данные:
qnp = 357(82,9 / 70)1+0,3(300 / 360)0,07 = 439 Вт/м2.
Определяем уровень теплоотдачи горизонтальных (1г-=0,8 м) и вертикальных (lв=2,7 м) труб (с учетом Dy20) используя формулу Qтр = qвхlв +qгхlг. Получаем:
Qтр = 93х2,7 + 115х0,8 = 343 Вт.
Воспользовавшись формулой Ap = Qnp/qnp и Qпp = Qп — µ трхQтр, определяем расчетную площадь конвектора:
Ар =(1410 — 0,9х343) / 439 = 2,51 м2.
То есть, к установке принят конвектор «Универсал-20» длина кожуха которого составляет 0,845 м (модель КН 230-0,918, площадь которой 2,57м2).
Теплотехнический расчет.
Приступаем непосредственно к теплотехническому расчету, а именно – нам необходимо подобрать толщину 2-го слоя (утеплителя) исходя из условий места строительства.
В первую очередь – определяем норму тепловой защиты из условий соблюдения санитарных норм.
Согласно формулы 3 из СНиП 23-02-2003 “Тепловая защита зданий” рассчитывается нормативное (или другими словами максимально допустимое) сопротивление теплопередачи, формула выгладит так:
где:
n = 1 – коэффициент, принятый по таблице 6, из СНиП 23-02-2003 “Тепловая защита зданий” для наружной стены (впрочем, в последнем актуализированном СП данный коэффициент упразднили!);
tint = 20°С – оптимальная температура в помещении, из исходных данных;
text = -30°С – температура наиболее холодной пятидневки, значение из исходных данных;
Δtn = 4°С – данный показатель принимается по таблице 5, из СНиП 23-02-2003 “Тепловая защита зданий” он нормирует температурный перепад между температурой воздуха внутри помещения и температурой внутренней поверхности ограждающей конструкции (стены);
αint = 8,7 Вт/(м2×°С) – коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 из СНиП 23-02-2003 “Тепловая защита зданий” для наружных стен.
Выполняем расчет:
получили сопротивление теплопередачи из санитарных норм Rreq = 1.437 м2*℃/Вт;
Во вторую очередь, определяем сопротивление теплопередачи из условий энергосбережения.
Определяем градусо-сутки отопительного периода, для этого воспользуемся формулой, согласно пункта 5.3 в СНиП 23-02-2003″Тепловая защита зданий”:
Dd = (tint – tht)zht = (20 + 4,0)*214 = 5136°С×сут
Примечание: градусо-сутки ещё имеют сокращенное обозначение – ГСОП.
Далее, согласно СНиП 23-02-2003 “Тепловая защита зданий” в зависимости от градусо-суток района строительства, рассчитываем нормативное значение приведенного сопротивления теплопередаче по формуле:
Rreq= a*Dd + b = 0,00035 × 5136 + 1,4 = 3,1976м2×°С/Вт,
где: Dd – градусо-сутки отопительного периода в г. Муром,
a и b – коэффициенты, принимаемые по таблице 4, столбец 3, СНиП 23-02-2003 “Тепловая защита зданий” для стен жилого здания.
таким образом, мы получили второе значение сопротивления теплопередачи исходя из энергоэффективности Rreq = 3,198 м2*℃/Вт;
Для дальнейшего расчета стены, мы принимаем наибольшее значение из двух рассчитанных нами показателей Rreq (1,437 и 3,198), и обозначим его как Rтреб = 3,198 м2*℃/Вт;
Определение толщины утеплителя
Для каждого слоя нашей многослойной стены необходимо рассчитать термическое сопротивление по формуле:
где:
δi- толщина слоя, мм;
λi – расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).
Рассчитываем термическое сопротивление для каждого слоя
1 слой (газобетонные блоки): R1 = 0,4/0,29 = 0,116 м2×°С/Вт.
3 слой (облицовочный силикатный кирпич): R3 = 0,12/0,87 = 0,104 м2×°С/Вт.
4 слой (штукатурка): R4 = 0,02/0,87 = 0,023 м2×°С/Вт.
Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала:
где:
Rint = 1/αint = 1/8,7 – сопротивление теплообмену на внутренней поверхности;
Rext = 1/αext = 1/23 – сопротивление теплообмену на наружной поверхности,
αext принимается по таблице 14 для наружных стен;
ΣRi = 0,116 + 0,104 + 0,023 – сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м2·°С/Вт
Толщина утеплителя равна:
где: λут – коэффициент теплопроводности материала утеплителя, Вт/(м·°С).
Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм:
где: ΣRт,i – сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м2·°С/Вт.
Из полученного результата можно сделать вывод, что
R0 = 3,343м2×°С/Вт > Rтр0 = 3,198м2×°С/Вт → следовательно, толщина утеплителя подобрана правильно.
Вот мы и выполнили теплотехнический расчет стены и нам известны толщины всех слоёв, входящих в её состав. Для того, чтобы долго не разбираться с нормативной документацией и самому считать на калькуляторе все эти сложные формулы, можно воспользоваться калькулятором “Теплотехнический расчет стены”, где Вам достаточно просто выбрать исходные данные, а сам расчет произведется автоматически.
Теплотехнический расчет индивидуального жилого дома
Приведенные выше методики укрупненных расчетов больше всего ориентированы на продавцов или покупателей радиаторов систем отопления, устанавливаемых в типовых многоэтажных жилых домах. Но когда речь идет о подборе дорогостоящего котельного оборудования, о планировании системы отопления загородного дома, в котором кроме радиаторов будут установлены системы напольного отопления, горячего водоснабжения и вентиляции, пользоваться этими методиками крайне не рекомендуется.
Каждый владелец индивидуального жилого дома или коттеджа еще на стадии строительства достаточно скрупулезно подходит к разработке строительной документации, в которой учитываются все современные тенденции использования строительных материалов и конструкций дома. Они обязательно должны не быть типовыми или морально устаревшими, а изготовлены с учетом современных энергоэффективных технологий. Следовательно, и тепловая мощность системы отопления должна быть пропорционально ниже, а суммарные затраты на устройство системы обогрева дома значительно дешевле. Эти мероприятия позволяют в дальнейшем при использовании отопительного оборудования снижать затраты на потребление энергоресурсов.
Расчет теплопотерь выполняется в специализированных программах либо с использованием основных формул и коэффициентов теплопроводности конструкций, учитывается влияние инфильтрации воздуха, наличие или отсутствие систем вентиляции в здании. Расчет заглубленных цокольных помещений, а также крайних этажей производится по отличной от основных расчетов методике, которая учитывает неравномерность остывания горизонтальных конструкций, то есть потери тепла через крышу и пол. Выше приведенные методики этот показатель не учитывают.
Теплотехнический расчет выполняется, как правило, квалифицированными специалистами в составе проекта на систему отопления в результате которого производится дальнейший расчет количества и мощность приборов отопления, мощность отдельного оборудования, подбор насосов и другого сопутствующего оборудования.
Исходные данные:
- Помещение с обмером по наружным габаритам 3000х3000;
- Окно размерами 1200х1000.
Целью расчета является определение удельной мощности системы отопления, необходимой для нагрева 1м.2
Результат:
- Qуд при т/изоляции 100 мм составляет 103 Вт/м2
- Qуд при т/изоляции 150 мм составляет 81 Вт/м2
- Qуд при т/изоляции 200 мм составляет 70 Вт/м2
Как видно из расчета, наибольшие потери тепла составляют для жилого дома с наименьшей толщиной изоляции, следовательно, мощность котельного оборудования и радиаторов будет выше на 47% чем при строительстве дома с теплоизоляцией в 200 мм.
Какие мероприятия планируют по результатам анализа теплопотерь
При выявлении тепло утечки принимают решение о капитальном ремонте здания. В целях энергосбережения утепляют наружные стены, монтируют более мощные и современные системы отопления. Устанавливают более качественные окна, с большим числом стеклопакетов, оказывающие тепловое сопротивление потерям. Однако чаще всего производят ремонт кровли, поскольку она является наиболее уязвимым местом для выхода тепла.
Если ваша семья, даже при наличии «теплых полов», оконных стеклопакетов, застекленной лоджии и современной входной двери, мерзнет – причину нужно искать в утечках теплового ресурса. Расчетные данные будут поводом для обращения в управляющую компанию и инициации соответствующих действий с ее стороны.
Пример расчета мощности батарей отопления
Возьмем помещение площадью 15 квадратных метров и с потолками высотой 3 метра.Объем воздуха, который предстоит нагреть в отопительной системе составит:
V=15×3=45 метров кубических
Далее считаем мощность, которая потребуется для обогрева помещения заданного объема. В нашем случае — 45 кубических метров. Для этого необходимо умножить объем помещения на мощность, необходимую для обогрева одного кубического метра воздуха в заданном регионе. Для Азии, Кавказа это 45 вт, для средней полосы 50 вт, для севера около 60 вт. В качестве примера возьмем мощность 45 вт и тогда получим:
45×45=2025 вт — мощность, необходимая для обогрева помещения с кубатурой 45 метров
Нормы теплоотдачи для отопления помещения
Согласно практике для отопления помещения с высотой потолка не превышающей 3 метра, одной наружной стеной и одним окном, достаточно 1 кВт тепла на каждые 10 квадратных метров площади.
Для более точного расчета теплоотдачи радиаторов отопления необходимо сделать поправку на климатическую зону, в которой находится дом: для северных районов для комфортного отопления 10 м2 помещения необходимо 1,4-1,6 кВт мощности; для южных районов – 0,8-0,9 кВт. Для Московской области поправки не нужны. Однако как для Подмосковья, так и для других регионов рекомендуется оставлять запас мощности в 15% (умножив расчетные значения на 1,15).
Существуют и более профессиональные методы оценки, описанные далее, но для грубой оценки и удобства вполне достаточно и этого способа. Радиаторы могут оказаться чуть более мощными, чем минимальная норма, однако при этом качество отопительной системы лишь возрастет: будет возможна более точная настройка температуры и низкотемпературный режим отопления.
Полная формула точного расчета
Подробная формула позволяет учесть все возможные варианты потери тепла и особенности помещения.
Q = 1000 Вт/м2*S*k1*k2*k3…*k10,
- где Q – показатель теплоотдачи;
- S – общая площадь помещения;
- k1-k10 – коэффициенты, учитывающие теплопотери и особенности установки радиаторов.
Показать значения коэффициентов k1-k10
k1 – к-во внешних стен в помещения (стен, граничащих с улицей):
- одна – k1=1,0;
- две – k1=1,2;
- три – k1-1,3.
k2 – ориентация помещения (солнечная или теневая сторона):
- север, северо-восток или восток – k2=1,1;
- юг, юго-запад или запад – k2=1,0.
k3 – коэффициент теплоизоляции стен помещения:
- простые, не утепленные стены – 1,17;
- кладка в 2 кирпича или легкое утепление – 1,0;
- высококачественная расчетная теплоизоляция – 0,85.
k4 – подробный учет климатических условий локации (уличная температура воздуха в самую холодную неделю зимы):
- -35°С и менее – 1,4;
- от -25°С до -34°С – 1,25;
- от -20°С до -24°С – 1,2;
- от -15°С до -19°С – 1,1;
- от -10°С до -14°С – 0,9;
- не холоднее, чем -10°С – 0,7.
k5 – коэффициент, учитывающий высоту потолка:
- до 2,7 м – 1,0;
- 2,8 — 3,0 м – 1,02;
- 3,1 — 3,9 м – 1,08;
- 4 м и более – 1,15.
k6 – коэффициент, учитывающий теплопотери потолка (что находится над потолком):
- холодное, неотапливаемое помещение/чердак – 1,0;
- утепленный чердак/мансарда – 0,9;
- отапливаемое жилое помещение – 0,8.
k7 – учет теплопотерь окон (тип и к-во стеклопакетов):
обычные (в том числе и деревянные) двойные окна – 1,17;
- окна с двойным стеклопакетом (2 воздушные камеры) – 1,0;
- двойной стеклопакет с аргоновым заполнением или тройной стеклопакет (3 воздушные камеры) – 0,85.
k8 – учет суммарной площади остекления (суммарная площадь окон : площадь помещения):
- менее 0,1 – k8 = 0,8;
- 0,11-0,2 – k8 = 0,9;
- 0,21-0,3 – k8 = 1,0;
- 0,31-0,4 – k8 = 1,05;
- 0,41-0,5 – k8 = 1,15.
k9 – учет способа подключения радиаторов:
- диагональный, где подача сверху, обратка снизу – 1,0;
- односторонний, где подача сверху, обратка снизу – 1,03;
- двухсторонний нижний, где и подача, и обратка снизу – 1,1;
- диагональный, где подача снизу, обратка сверху – 1,2;
- односторонний, где подача снизу, обратка сверху – 1,28;
- односторонний нижний, где и подача, и обратка снизу – 1,28.
k10 – учет расположения батареи и наличия экрана:
- практически не прикрыт подоконником, не прикрыт экраном – 0,9;
- прикрыт подоконником или выступом стены – 1,0;
- прикрыт декоративным кожухом только снаружи – 1,05;
- полностью закрыт экраном – 1,15.
После определения значений всех коэффициентов и подстановки их в формулу, можно посчитать максимально надежный уровень мощности радиаторов. Для большего удобства ниже находится калькулятор, где можно рассчитать те же самые значения быстро выбрав соответствующие исходные данные.