Пластинчатый теплообменник: принцип действия, схема и особенности работы аппарата

Классификация

Классификация теплообменников предусматривает их деление на такие виды:

  • пластинчатые;
  • трубчатые.

Пластинчатые устройства включают набор пластин с волнистыми каналами со штамповкой и поверхностями, предназначенными для циркуляции жидкостей. Пластины соединены при помощи прорезиненных прокладок и стяжек. Преимущества подобных устройств – легкость в применении и компактность.

Пластинчатые теплообменники находят все более широкое применение. Сфера их использования не ограничивается только промышленным оборудованием, возможен также монтаж этих устройств в жилых домах для монтажа отопительных систем.

Пластинчатые теплообменники классифицируются на группы:

  • неразборные (они же сварные и паяные);
  • полусварные;
  • разборные.

Разборные устройства наиболее популярны. В них пластины разделены при помощи резиновых уплотнителей. Установка не занимает много времени, а эксплуатация не вызывает трудностей.

Классический вариант пластинчатых теплообменников имеет входные и выходные патрубки на поверхности передней плиты. Некоторые устройства имеют патрубки и на передней, и на задней панелях. Рабочие среды подсоединяются к патрубкам посредством фланцевых, резьбовых, стальных соединений. Некоторые модели имеют меньшее количество патрубков, тогда теплоносители подсоединяются непосредственно к плите.

Трубчатые теплообменники включают трубы малого диаметра, вваренные в другие трубы. Достоинствами устройства считается применение в условиях повышения давления.

По критерию способа теплообмена техника подразделяется на смесительную и поверхностную. Устройства смесительного типа передают тепло при плотномконтактировании носителей. Поверхностные теплообменники содержат два контура, в которых происходит перемещение сред с отличными температурами. Обмен теплом между ними возможен через поверхностные элементы пластин, стенок, листов или труб, которые выполнены из теплопроводящих материалов (нержавеющей или высокоуглеродистой стали, сплавов цветных металлов). Этот тип оборудования применяется в жилищно-коммунальном хозяйстве, промышленных предприятиях и в организации малого бизнеса.

Поверхностные теплообменники делятся виды: рекуперативные и регенеративные. Рекуперативные теплообменники характеризуются константным обменом тепла посредством стенок контуров при однонаправленном движении носителей. В регенеративных устройствах происходит поочередный контакт носителей с теплообменивающей поверхностью.

Рекуперативные теплообменники тоже классифицируются:

  1. Погружные. Принцип работы предусматривает движение одного теплоносителя по змеевику, который погружен в бак, содержащий второй жидкий теплоноситель. Модель отличается удобством в применении, характеризуется оптимальной стоимостью.
  2. Оросительные. Сфера применения – как конденсаторы в системах охлаждения. Теплобменники выглядят как змеевики из горизонтальных труб, которые размещены в вертикальной плоскости. У каждого ряда труб есть желоб, по которому на них стекает вода пониженной температуры. Вода, которая не испарилась, возвращается в систему благодаря насосу.
  3. Витые. Представляют собой систему труб, намотанных на сердечник. Компактны и высокоэффективны.
  4. Спиральные. Для оборудования характерен вид двух спиральных каналов, которыми обвита центральная перегородка. Предназначены для охлаждения и нагрева вязких жидкостей.
  5. Кожухотрубные. Трубные решетки присоединены к кожуху посредством сварки. В них закрепляются трубы. Крепление их происходит плотно при помощи развальцовки. Решетки закрыты крышками на шпильках, болтах и прокладках. Кожух включает штуцера (патрубки). Принцип работы заключен в циркуляции носителя тепла в межтрубном пространстве и по трубам. Увеличение теплоотдачи происходит при помощи оребрения.
  6. Секционные – последовательность секций, которые представляют собой кожухотрубные устройства.
  7. Пластинчатые. Включают набор пластин с волнистыми поверхностями со штамповкой и каналами для движения жидкостей. Возможна работа только при пониженном давлении.

Кожухотрубный теплообменник

Принцип функционирования пластинчатого теплообменника

     На неподвижной плите, использующейся для опоры устройства, расположен патрубок, через который в аппарат поступает среда. Она впоследствии будет нагрета до нужной температуры. После этого среда перемещается в продольный коллектор. Для этого в теплообменнике имеется угловое отверстие. Благодаря наличию коллектора среда движется до последней пластины. При этом она еще равномерно распределяется абсолютно по всем каналам, расположенным между гофрированными пластинами. Кроме того, уплотнения, которые размещены по специальной схеме, способствуют соединению межпластинных каналов и углового коллектора.

     Когда нагреваемая среда двигается по межпластинным каналам она проходит по гофрированным поверхностям плоских элементов теплообменника. Они же в свою очередь нагреваются с обратной стороны другим теплоносителем, имеющим определенную температуру в каждой конкретной ситуации. После этого среда, которая подвергается нагреванию, попадает в нижний коллектор. Затем она выходит из теплообменника через соответствующий патрубок.

     Теплоноситель, являющийся греющей средой, попадает в аппарат через патрубок, предназначенный для подачи нагретой жидкости. Его движение выполняется навстречу среде, подлежащей нагреву. Благодаря наличию нижнего коллектора происходит распределение греющего теплоносителя, который потом перемещается по каналам. Данная среда выходит из аппарата через верхний коллектор, соединенный со специальным выходным патрубком.

     Каналы, предназначенные для нагреваемой и греющей среды, чередуются. По этой причине устройство, имеющее самую простую конструкцию, обязано состоять минимум из 3 пластин. Именно такое количество плоских элементов теплообменника образовывает два канала. Один из них предназначен для нагревающего теплоносителя, а второй — для нагреваемой среды.

     Перемещающаяся по каналам жидкость выполняет извилистые движения в трех направлениях. Благодаря этому образуется ее турбулизация. При этом гидравлическое сопротивление не только на выходе, но и на входе в канал уменьшается, когда теплоноситель проходит через угловые отверстия. За счет этого абсолютно вся площадь пластинчатых элементов устройства используется эффективно. Поэтому нужно по возможности устанавливать на объектах именно пластинчатые теплообменники. Главное правильно выполнить подбор таких аппаратов.

Пластинчатые теплообменники области применения

Пластинчатые теплообменники применяются в системе отопления дома, горячего водоснабжения, в системах кондиционирования в больших коттеджах, школах, садах, бассейнах, в целых микрорайонах, а также в системе отопления домов сельской местности. Широкое применение пластинчатые теплообменники нашли в пищевой промышленности.

Теплообменники для отопления имеют ряд неоспоримых преимуществ по сравнению с остальными устройствами, используемыми для создания подходящего микроклимата.

Подобные отопительные приборы обладают рядом преимуществ над другими видами.

Положительные качества

Среди основных положительных качеств устройства, обеспечивающего отопление, можно отметить следующие:

  • высокий уровень компактности;
  • пластинчатые теплообменники имеют высокий коэффициент теплопередачи;
  • коэффициент тепловых потерь максимально низкий;
  • потери давления находятся на минимальном уровне;
  • выполнение монтажно-наладочных, ремонтных и изоляционных работ требует низких финансовых затрат;
  • при возможном засорении это устройство может быть разобрано, очищено и собрано обратно всего двумя рабочими уже через 4-6 часов;
  • имеется возможность добавить мощность пластинам.

https://youtube.com/watch?v=pOTVV58Rj3U

Кроме того, благодаря своей простоте подключение теплообменника к системе отопления может быть осуществлено просто на полу в тепловом пункте или на обычной несущей конструкции блочного теплового пункта. Отдельно стоит отметить низкий уровень загрязняемости поверхности теплообменника, что вызвано высокой турбулентностью потока жидкости, а также благодаря качественной полировке используемых теплообменных пластин. На сегодняшний срок эксплуатации уплотнительной прокладки у ведущих европейских производителей составляет не менее 10 лет. Срок же службы пластин составляет 20-25 лет. Стоимость замены уплотнительной прокладки может составлять 15-25% от общей стоимости всего агрегата.

Очень важно, что после проведения детального расчета конструкцию современного пластинчатого теплообменника можно изменить под необходимые и указанные в техническом задании характеристики (вариативность конструкции и изменяемость задачи). Абсолютно все пластинчатые теплообменники устойчивы к высокому уровню вибрации

У современных аппаратов системы отопления последствия возможных гидроударов сведены практически к нулю

У современных аппаратов системы отопления последствия возможных гидроударов сведены практически к нулю.

Схемы обвязки пластинчатого теплообменника

Существует несколько способов подключения ПТО к отопительной системе. Наиболее простым принято считать параллельное включение с регулировочным клапаном, принципиальная схема которого приведена ниже:

К недостаткам такого подключения можно отнести повышенную нагрузку на отопительный контур и небольшую эффективность нагрева воды при значительной разности температур.

1 – пластинчатый теплообменник; 2 – температурный регулятор; 2.1 – клапан; 2.2 – термостат; 3 – насос циркуляционный; 4 – счетчик расхода горячей воды; 5 – манометр.

Нагревающей средой для первой ступени служит обратный контур отопительной системы, а в качестве нагреваемой среды – холодная вода. Во втором контуре нагревательной средой служит теплоноситель из прямой магистрали отопительной системы, а в качестве нагреваемой среды – предварительно подогретый теплоноситель из первой ступени.

Типовые пластины и прокладки

Пластины

Самая важная и самая дорогая часть ПТ – это его термические пластины, которые изготавливаются из металла, металлического сплава или даже специальных графитовых материалов, в зависимости от области применения.

Примеры материалов для изготовления ПТ, обычно встречающиеся в промышленном применении:

  • нержавеющая сталь,
  • титан,
  • никель,
  • алюминий,
  • инколой,
  • хастеллой,
  • монель,
  • тантал.

Пластины могут быть плоскими, но в большинстве случаев имеют гофры, которые оказывают сильное влияние на теплогидравлические характеристики устройства. Некоторые из основных типов пластин показаны на рисунке 3, хотя большинство современных ПТ используют шевронные типы пластин.

Рисунок 3 – Типичные категории пластинчатых гофр: (а) стиральная доска, (б) зигзагообразная, (в) шевронная или елочка, (г) выступы и углубления, (д) стиральная доска со вторичными гофрами, (е) косая стиральная доска.

Каналы, образованные между соседними пластинами, создают закрученное движение для жидкостей, как видно на рисунке 4.

Рисунок 4 – Турбулентный поток в каналах пластинчатого теплообменника

Угол шеврона обращен в смежных листах, так что, когда пластины затягиваются, гофры обеспечивают многочисленные точки контакта, которые поддерживают оборудование. Уплотнение пластин достигается прокладками, установленными по периметру.

Рисунок 5 – Технические характеристики пластин

Прокладки

Прокладки обычно представляют собой формованные эластомеры, выбранные на основе их совместимости с жидкостью и условий температуры и давления. Многопроходные устройства могут быть реализованы в зависимости от расположения прокладок между пластинами. Бутиловые или нитрильные каучуки – это материалы, обычно используемые при изготовлении прокладок.

Рисунок 6 – Технические характеристики прокладок

Разновидности узлов обвязки

Обвязка данного прибора состоит из целого ряда элементов, которые ответственны за регулирование температуры носителя тепла, устройства контроля, подводку. При этом крайне необходимо подобрать все элементы обвязки таким образом, дабы те целиком соответствовали всем требованиям носителя тепла. Мы имеет в виду, в первую очередь, затраты этого носителя, а также сечение патрубков. Итак, обвязка калорифера традиционного вида состоит из следующих элементов:

  1. насоса;
  2. клапана, оборудованного электрическим приводом на два или три хода;
  3. приборов измерения температуры и давления;
  4. подводки;
  5. шаровых кранов;
  6. очищающего фильтра;
  7. байпаса.

Существует еще традиционная обвязка, имеющая жесткую подводку. Это используется в тех случаях, когда нет потребности в применении гибкой подводки, поскольку все коммуникационные магистрали состоят исключительно из стальных труб. Более того, в таком случае место, где будет располагаться узел, заведомо определено. Такая разновидность обвязки, особенно в сочетании с водным калорифером, позволяет не только существенно сэкономить время и силы при монтаже, но и меньше тратить на это все денег.

Отличительной чертой любой гибкой подводки можно считать тот факт, что она состоит из гофрированных шлангов вместо традиционных труб из стали. Если сделать узел подобным образом, то его функциональность возрастет. Более того, его можно будет располагаться даже в тех местах, где по той или иной причине нельзя использовать трубы из стали. При этом вы при желании можете усилить контроль над работой системы, увеличив число термоманометров до четырех.

О принципе действия

Пластинчатый теплообменник принцип действия имеет достаточно сложный. Пластины в конструкции располагаются под углом в 180 градусов относительно друг друга. Зачастую производители делают это попакетно, следовательно, компонуются сразу четыре изделия и создается пара коллекторных контуров – подача жидкости и «обратка». Хотя стоит знать, что крайние пластины не принимают никакого участия в процессе теплообмена.

Собственно, с принципом действия устройства все более-менее понятно. Сейчас же рассмотрим классификацию данной конструкции – в соответствии с ней теплообменники могут быть трех типов.

  • Одноходовые приборы, в которых теплоноситель циркулирует перманентно, в одном и том же направлении по всей площади системы. Помимо того, здесь имеет место и противоток жидкостей.
  • Многоходовые приборы, которые можно использовать исключительно в тех случаях, когда разница в температуре носителей тепла не слишком высокая. Потоки жидкости здесь будут двигаться в различных направлениях.

Устройство и принцип работы

Конструкция разборного пластинчатого теплообменника включает в себя:

  • стационарную переднюю плиту на которой монтируются входные и выходные патрубки;
  • неподвижную прижимную плиту;
  • подвижную прижимную плиту;
  • пакет теплообменных пластин;
  • уплотнения из термостойкого и устойчивого к воздействию агрессивных сред материала;
  • верхнюю несущую базу;
  • нижнюю направляющую базу;
  • станину;
  • комплект стяжных болтов;
  • Набор опорных лап.

Такая компоновка агрегата обеспечивает максимальную интенсивность теплообмена между рабочими средами и компактные габариты устройства.

Конструкция разборного пластинчатого теплообменника

Чаще всего, теплообменные пластины изготавливаются методом холодной штамповки из нержавеющей стали толщиной от 0,5 до 1 мм, однако, при использовании в качестве рабочей среды химически активных соединений, могут использоваться титановые или никелевые пластины.

Все пластины, входящие в состав рабочего комплекта, имеют одинаковую форму и устанавливаются последовательно, в зеркальном отражении. Такая методика установки теплообменных пластин обеспечивает не только формирование щелевых каналов, но и чередование первичного и вторичного контуров.

Каждая пластина имеет 4 отверстия, два из которых обеспечивают циркуляцию первичной рабочей среды, а два других изолируются дополнительными контурными прокладками, исключающими возможность смешивания рабочих сред. Герметичность соединения пластин обеспечивается специальными контурными уплотнительными прокладками, изготовленными из термостойкого и устойчивого к воздействию активных химических соединений материала. Устанавливаются прокладки в профильные канавки и фиксируются с помощью клипсового замка.

Принцип работы пластинчатого теплообменника

Оценка эффективности любого пластинчатого ТО осуществляется по следующим критериям:

  • мощности;
  • максимальной температуре рабочей среды;
  • пропускной способности;
  • гидравлическому сопротивлению.

Исходя из этих параметров подбирается необходимая модель теплообменника. В разборных пластинчатых теплообменниках регулировать пропускную способность и гидравлическое сопротивление можно, изменяя количество и тип пластинчатых элементов.

Интенсивность теплообмена обусловлена режимом течения рабочей среды:

  • при ламинарном течении теплоносителя интенсивность теплообмена минимальна;
  • для переходного режима характерно увеличение интенсивности теплообмена за счет появления завихрений в рабочей среде;
  • максимальная интенсивность теплообмена достигается при турбулентном движении теплоносителя.

Рабочие характеристики пластинчатого ТО рассчитываются для турбулентного течения рабочей среды.

В зависимости от расположения канавок, различают три типа теплообменных пластин:

  1. с «мягкими» каналами (канавки расположены под углом 60). Для таких пластин характерна незначительная турбулентность и небольшая интенсивность теплообмена, однако «мягкие» пластины обладают минимальным гидравлическим сопротивлением;
  2. со «средними» каналами (угол рифления от 60 до 30). Пластины являются переходным вариантом и отличаются средними показателями турбулентности и интенсивности теплопередачи;
  3. с «жесткими» каналами (угол рифления 30). Для таких пластин характерна максимальная турбулентность, интенсивный теплообмен и значительное увеличение гидравлического сопротивления.

Для увеличения эффективности теплообмена движение первичной и вторичной рабочей среды осуществляется в противоположном направлении. Процесс теплообмена между первичной и вторичной рабочими средами происходит следующим образом:

  1. Теплоноситель подается на входные патрубки теплообменника;
  2. При перемещении рабочих сред по соответствующим контурам, сформированным из теплообменных пластинчатых элементов, происходит интенсивная теплопередача от нагретой среды нагреваемой;
  3. Через выходные патрубки теплообменника нагретый теплоноситель направляется по назначению (в отопительные, вентиляционные, водопроводные системы), а остывший теплоноситель снова попадает в рабочую зону теплогенератора.

Принцип работы пластинчатого теплообменного аппарата

Для обеспечения эффективной работы системы необходима полная герметичность теплообменных каналов, которая обеспечивается уплотнительными прокладками.

Виды газовых котлов

По принципу работы газовые котлы делятся на две группы:

  1. конвекционные;
  2. конденсационные.

Первая группа котлов считается традиционным оборудованием, производящим отопление за счёт сжигания газа, при этом часть тепла уходит вместе с дымовыми отходами. Принцип работы такого котла прост, понятен, а цена относительно невысока.

Второй тип котлов разработан по новым технологиям, позволяющим более полно использовать теплоту сгорания газа. Это позволяет получить КПД примерно на 15-20 процентов выше, чем у конвекционной модели. А это означает соответственную экономию топлива и получение более дешевого тепла. Однако ощутимо выше, чем у конвекционного.

Разработкой и производством газовых котлов занимаются многие компании европейского и мирового уровня. Практически все современные модели оснащены надежной автоматизированной защитной системой, не требующей ручного управления, которая отвечает за подачу горючего и поддержание температуры в заданном режиме. Модели, оборудованные контроллером газового давления, гарантированы от перегрева, возгорания и других подобных поломок, поскольку он немедленно прекратит подачу газа в случае снижения давления, утечки топлива или угасания пламени.

2013-01-23 10 529

Во многих европейских газовых котлах, устанавливается битермический теплообменник. Судя по заверениям производителей – это снижает себестоимость производства и практически не отражается на теплоотдаче и КПД отопительного оборудования.

В интернете наоборот, можно найти множество статей, предостерегающих от покупки котлов с битермическим теплообменником. Чтобы разобраться, где истина необходимо узнать об особенностях конструкции и эксплуатации устройства.

Устройство и принцип работы пластинчатого теплообменника

Конструктивно агрегат в корне отличается от своего кожухотрубного предшественника. Площадь поверхности обмена тепловой энергией у последнего наращивалась за счет увеличения длины змеевика, отсюда и большие габариты аппарата. В новом теплообменнике это достигается путем увеличения количества пластин одинаковой площади.

Имея такую же мощность, он по размерам втрое меньше кожухотрубного, при этом способен обеспечить большой расход нагреваемой среды, например, воды для нужд ГВС. Отсюда и возникло второе название агрегата – скоростной. Ниже на схеме показано устройство пластинчатого теплообменника:

1, 11 – подающий и обратный патрубки для подключения греющей среды (теплоносителя); 2, 12 – входной и выходной патрубки нагреваемой среды; 3 – передняя неподвижная плита; 4, 14 – отверстия для протока теплоносителя; 5 – малая уплотнительная прокладка в виде кольца; 6 – рабочая теплообменная пластина; 7 – верхняя направляющая; 8 – задняя подвижная плита; 9 – задняя опора; 10 – шпилька; 13 – большая прокладка по контуру пластины; 15 – нижняя направляющая.

На схеме представлен пластинчатый теплообменник для отопления самой простой конструкции с патрубками, расположенными по разные стороны агрегата. Между двумя плитами, установленными на двух направляющих, зажато определенное число пластин с резиновым уплотнением между ними. На каждой пластине с целью увеличения поверхности обмена выполнено рельефное гофрирование, как изображено на фото:

Присоединительные патрубки также могут находиться и с одной стороны аппарата, на передней плите, что не оказывает влияния на принцип работы пластинчатого теплообменника. Он заключается в том, что пространство между каждыми последующими пластинами поочередно заполняется то теплоносителем, то нагреваемой средой. Очередность заполнения обеспечивается формой прокладок, в одной секции они открывают путь потоку теплоносителя, в другой – поглотителя тепла.

Во время работы в каждой секции, кроме первой и последней, происходит интенсивный обмен теплом через пластины сразу с двух сторон. Обе среды протекают через свои секции навстречу друг другу, нагревающая подается сверху и выходит через нижний патрубок, а нагреваемая – наоборот. Как это работает, отображает функциональная схема пластинчатого теплообменника:

Конструкция пластинчатого теплообменника

Назначение теплообменников всех видов — преобразовывать непрогретую жидкостную среду в нагретую (и наоборот).

Пластинчатые теплообменники обладают разборной конструкцией, состоящей из таких частей

  • недвижимой плиты;
  • подвижной плиты;
  • комплекта пластин;
  • деталей крепежа, объединяющих две плиты в единую раму;
  • нижнего и верхнего направляющего элемента круглой формы.


Конструкция пластинчатого теплообменника Размеры рам различных моделей могут существенно отличаться. Они зависят от мощности и тепловой отдачи подогревателя — с большим числом пластин увеличивается продуктивность прибора и, соответственно, возрастают его габариты и масса.

Пластины теплообменника

Конструкция пластинчатого теплообменника зависит от модификации устройства и может содержать различное количество пластин с закрепленными на них прокладками, герметизирующими каналы с протекающим по ним теплоносителем. Для достижения требуемой по условию герметичности плотности прилегания пар соседних прокладок одной к другой достаточно скрепления этих двух пластин с неподвижной плитой.

Нагрузки, действующие на аппарат, прилагаются главным образом на прокладки и пластины. Крепежные детали и рама, по сути, представляют собой корпуса прибора.

Рельефная окантовка пластин при сжатии гарантирует надежное крепление и дает конструкции теплообменника требуемую жесткость и прочность.

Конструкция пластин теплообменника

Прокладки закрепляются на пластинах посредством клипсового замка. Следует отметить, что прокладки при их зажатии самоцентрируются по направляющей. Утечка теплоносителя предотвращается окантовкой обшлага, создающей дополнительный барьер.

Для теплообменников производятся два типа пластин:

  • с термически мягким рифлением;
  • с термически жестким рифлением.

В деталях с мягким рифлением каналы устроены под углом 30°. Такой вид пластин отличается повышенной теплопроводимостью, но меньшей устойчивостью к давлению теплоносителя.

В частях с термически жестким рифлением при устройстве канавок соблюден угол в 60°. Этим пластинам не свойственна высокая теплопроводность, их преимущество — способность переносить высокое давление в системе.

Достижение оптимального режима теплоотдачи возможно при комбинировании пластин в теплообменнике. При этом необходимо учесть, что для эффективной работы прибора нужно, чтобы он функционировал в режиме турбулентности — теплоноситель должен перемещаться по каналам без каких-либо помех. К слову, кожухотрубный теплообменник, в котором реализована конструктивная схема «труба в трубе» — с ламинарным режимом течения жидкости.

Прокладки

К устройствам с пластинами предъявляются очень жесткие требования относительно герметичности, в связи с чем в последнее время прокладки стали выпускать из полимеров. Этиленпропилен, например, способен без проблем работать в условиях высоких температур — и воды, и пара. Но очень быстро разрушается в среде с содержанием масел и жиров.

Прикрепление прокладок к пластинам выполняется преимущественно клипсовым соединением, реже — посредством клея.

Типы пластинчатых теплообменников

     Устройства для переноса тепла между нагретой и холодной средой подразделяются на следующие типы в зависимости от схемы передвижения теплоносителей:

1. Одноходовые пластинчатые аппараты, в которых среда перемещается постоянно по одной и той же траектории. При этом теплоноситель проходит по всей длине устройства. Еще в таких аппаратах среды всегда движутся в противоположных направлениях. Это является их основной отличительной чертой.

2. Многоходовые пластинчатые аппараты, рекомендованные для использования на тех объектах, где требуется достичь незначительной разницы температуры между греющей и нагреваемой жидкостью. У этих устройств патрубки находятся не только спереди на неподвижной части, но и с торца на нажимной плите. В устройствах данного типа потоки сред способны менять направления движения. Это может происходить в нескольких или исключительно в одном ходу. Многоходовые устройства передачи тепла оснащаются по одному входному и выходному отверстию.

3. Многоконтурные пластинчатые аппараты, имеющие в своей конструкции независимые контуры в количестве 2 штук. Они располагаются на одной стороне. Применяются такие устройства в тех случаях, когда нужно создать двухэтапные условия охлаждения или прогрева теплоносителя. Еще данные теплообменники позволяют эффективно выполнять регулирование тепловой мощности.

      Однако на этом классификация пластинчатых теплообменников не заканчивается. Они еще подразделяются в зависимости от легкости доступа к устройствам, так как их поверхности необходимо не только постоянно чистить механическим способом, но и просто осматривать.

     Производители создают три разновидности теплообменников пластинчатого типа:

1. Разборные устройства, имеющие минимально возможные размеры. Данные аппараты очень просто обслуживаются. Их гофрированные пластины и все каналы при необходимости имеется возможность без затруднения очистить. При этом конструкция таких теплообменников позволяет изменять число, и даже тип гофрированных пластин. В результате появляется возможность уменьшить или увеличить мощность отдельно взятого аппарата. Если же возникает утечка теплоносителя, то в этом случае исправить поломку тоже не составляет никакого труда, так как можно выполнить быструю замену уплотнительного элемента или пластины.

2. Полусварные устройства, к которым еще относятся полуразборные аппараты. Такие теплообменники состоят из нескольких модулей, изготовленных при помощи сварки. В состав каждого из них входит две гофрированные пластины. Для их сварки между собой используются лазерные аппараты. Из данных модулей собирается единый пакет. Для этого применяются торцевые пластины и болты, с помощью которых они стягиваются. Эти теплообменники используются в тех случаях, когда какой-нибудь теплоноситель имеет повышенное давление или температуру. Еще аппараты данного вида применяются для нагрева или охлаждения опасных сред.

3. Неразборные устройства, которыми являются теплообменники, изготовленные при помощи пайки. Они состоят из определенного количества гофрированных плит из нержавейки. Данные элементы соединяются между собой методом пайки. Этот процесс осуществляется в вакууме. При этом еще используется припой из никеля или меди. Такие теплообменники отличаются повышенной надежностью, небольшими габаритами и легкой установкой. Неразборные устройства способны самостоятельно очищать свои каналы, так как в них присутствует высокая турбулизация потока среды. Кроме того, они дают хороший экономический эффект. Используются данные аппараты в теплоснабжении, где с их помощью осуществляется нагрев воды.

     Все вышеперечисленные теплообменники пластинчатого типа создаются из тонколистового металла. Минимальное количество пластин в одном аппарате обычно составляет 7 штук. Их максимальное число может быть любым, так как практически ничем не ограничивается. При этом самая большая температура нагревающей среды не превышает 150 градусов. В то же время максимальное давление составляет 9,8 бар. На количество теплоносителя, который проходит через теплообменник, влияют его габариты.

Нюансы монтажа и подключения

Теплообменник применяется только в связке и не подразумевает самостоятельного использования. Агрегат во время установки окружают вспомогательным оборудованием, таким как обратные клапаны, контрольно-измерительные устройства в виде термометров и манометров, запорная арматура (ручные заслонки и задвижки), циркуляционные насосы.

Подключение производится по одной из следующих схем:

  • одноступенчатый параллельный (независимый) метод,
  • двухступенчатый смешанный,
  • двухступенчатый последовательный.

Монтаж пластинчатого теплообменника

В первом случае образуется изрядная экономия полезной площади в зоне монтажа

Ключевое преимущество этого способа – простота исполнения (что важно в условиях ремонта, обслуживания, замены узла). Недостаток методики – отсутствие возможности подогрева холодной рабочей среды

При двухступенчатом смешанном методе температура входящего теплоносителя повышается за счет обратного потока, в результате эффективность связки увеличивается на 35-40%. Но в этом случае для обеспечения горячего водоснабжения придется предусмотреть в системе два теплообменника, что увеличивает расходы на закупку и монтаж оборудования.

Последовательный двухступенчатый способ позволяет увеличить эффективность использования рабочей среды и стабилизировать нагрузку в сети. По сравнению с параллельной схемой здесь затраты на теплоноситель уменьшаются на 50%, на фоне смешанной методики – на 25%. Единственный недостаток решения – невозможность полной автоматизации теплового узла.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий